岩土力学 ›› 2023, Vol. 44 ›› Issue (1): 119-130.doi: 10.16285/j.rsm.2022.0297

• 基础理论与实验研究 • 上一篇    下一篇

沟谷地形对高填方拱涵涵周土压力影响研究

冯忠居1,王思琦1,王溪清1,王泽国1,潘放2,成圆梦1,李军2   

  1. 1. 长安大学 公路学院,陕西 西安 710064;2. 广东省高速公路有限公司,广东 广州 510623
  • 收稿日期:2022-03-13 接受日期:2022-06-13 出版日期:2023-01-16 发布日期:2023-01-13
  • 通讯作者: 王思琦,男,1992年生,博士研究生,主要从事公路涵洞及隧道工程研究。E-mail: 2020021005@chd.edu.cn E-mail:ysf@gl.chd.edu.cn
  • 作者简介:冯忠居,男,1965年生,博士,教授,博士生导师,主要从事岩土工程与桥涵工程等方面的研究。
  • 基金资助:
    中央高校基本科研业务费专项资金项目(No. 300102218208);广东省交通运输厅科技计划项目(No. 2013-02-010)。

Influence of valley topography on earth pressure of high-fill arch culvert

FENG Zhong-ju1, WANG Si-qi1, WANG Xi-qing1, WANG Ze-guo1, PAN Fang2, CHENG Yuan-meng1, LI Jun2   

  1. FENG Zhong-ju1, WANG Si-qi1, WANG Xi-qing1, WANG Ze-guo1, PAN Fang2, CHENG Yuan-meng1, LI Jun2
  • Received:2022-03-13 Accepted:2022-06-13 Online:2023-01-16 Published:2023-01-13
  • Supported by:
    This work was supported by the Central Universities Basic Research Business Expenses Special Funds Project (300102218208) and the Science and Technology Plan Project of Guangdong Provincial Department of Transportation (2013-02-010).

摘要:

沟谷地形下高填方涵洞土压力分布规律较为复杂,不同沟谷地形下涵周土压力分布规律与上埋式涵洞差异显著。为探明沟谷地形对高填方拱涵涵周土压力的影响,采用离心模型试验与数值模拟方法,建立了地形−涵洞−填土的相互作用模型,分析了不同沟谷宽度B、沟谷坡度 下的拱涵涵周土压力及涵顶土压集中系数Ks的分布规律,并与最新涵洞设计规范进行了对比,阐述了沟谷地形下高填方拱涵土压力形成机制。研究表明:(1)沟谷宽度B对涵顶土压力集中系数Ks影响显著,沟谷宽度B为4D~6DD为拱涵的净跨径,涵顶土压力集中系数Ks增幅较大;(2)沟谷宽度B小于4D时,可发挥沟谷地形对涵洞的减载作用;(3)沟谷坡度a 在45°~60°时,涵顶土压力及其Ks变化最显著;(4)填土高度为20 m,a >70°时,Ks ≤1。填土高度为40 m,a >50°时,Ks ≤1;(5)我国最新涵洞设计规范推荐的Ks与离心模型试验、数值模拟规律存在一定差异,当a =45°时,沟谷宽度 较小时,规范的涵顶土压力集中系数 K较为保守;(6)沟谷地形下高填方拱涵 K与拱顶压密区、等压面的形成有关。拱顶压密区可引起拱涵涵顶土压力集中,并引起压密区周边土体的竖向土压力呈拱形分布。在接近地表一定深度处,拱形分布逐渐向水平分布过渡,从而形成等压面。等压面上部荷载将分散于沟谷坡体,故可发挥沟谷地形的卸荷效应。

关键词: 高填方拱涵, 沟谷宽度, 沟谷坡度, 涵周土压力, 受荷机制

Abstract: High-fill culverts placed in valley topography have a complex earth pressure distribution law due to their locations around culverts in various valley topography conditions. In order to investigate the influence of valley topography on the earth pressure around the culvert of high-fill arch culverts, a interaction model of "topography-culvert-fill" was established by using centrifugal model test and numerical simulation method. Additionally, the distribution laws of earth pressure around the arch culverts and earth pressure concentration coefficient Ks at the top of the culvert under different valley widths B and valley slopes a were analyzed and were compared with the latest Chinese culvert design code. Furthermore, the mechanism of earth pressure formation of high-fill arch culverts under valley topography was presented. The research findings are as follows: (1) The influence of the valley width B on the earth pressure concentration coefficient Ks at the top of the culvert is significant, and the increment of the earth pressure concentration coefficient Ks at the top of the culvert is larger when B is 4D−6DD is the clear span of arch culvert). (2) When B is less than 4D, the topography would play the role of load reduction to the culvert. (3) With valley slopes ranging from 45° to 60°, the earth pressure at the tops and Ks would be affected dramatically. (4) When fill height is 20 m with a >70°, Ks≤1; and when 40 m fill height with a >50°, Ks≤1. (5) The Ks recommended by the latest Chinese culvert design code differs to some extent from those by centrifugal model test and numerical simulation. In the case of a =45° with a small B value, the earth pressure concentration coefficient Ks at the top of a culvert of the code is more conservative. (6) Ks of high-fill arch culvert in valley is related to the formation of arch top compaction area and isobaric surface. The arch top compaction area can cause the earth pressure concentration on the top of the arch culvert, and cause the vertical earth pressure of the soil around the compaction area to be arched. At a certain depth approaching the surface of the fill, the arch distribution gradually transits to the horizontal distribution, thus forming an isobaric surface. The upper load of the isobaric surface will be dispersed on the valley slope, so the unloading effect of the valley topography can be exerted.

Key words: high-fill arch culvert, valley width, valley slope, earth pressure around the culvert, loading mechanism

中图分类号: 

  • U 449.84
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘 晓,唐辉明,刘 瑜. 基于集对分析和模糊马尔可夫链的滑坡变形预测新方法研究[J]. , 2009, 30(11): 3399 -3405 .
[2] 胡大伟,周 辉,谢守益,张 凯,邵建富,冯夏庭. 大理岩破坏阶段Biot系数研究[J]. , 2009, 30(12): 3727 -3732 .
[3] 师旭超,韩 阳. 卸荷作用下软黏土回弹吸水试验研究[J]. , 2010, 31(3): 732 -736 .
[4] 原喜忠,李 宁,赵秀云,杨银涛. 东北多年冻土地区地基承载力对气候变化敏感性分析[J]. , 2010, 31(10): 3265 -3272 .
[5] 白 冰,李小春,石 露,唐礼忠. 弹塑性应力-应变曲线的斜率恒等式及其验证和应用[J]. , 2010, 31(12): 3789 -3792 .
[6] 唐利民. 地基沉降预测模型的正则化算法[J]. , 2010, 31(12): 3945 -3948 .
[7] 李占海,朱万成,冯夏庭,李绍军,周 辉,陈炳瑞. 侧压力系数对马蹄形隧道损伤破坏的影响研究[J]. , 2010, 31(S2): 434 -441 .
[8] 蔡辉腾,危福泉,蔡宗文. 重庆主城区粉质黏土动力特性研究[J]. , 2009, 30(S2): 224 -228 .
[9] 宋 玲 ,刘奉银 ,李 宁 . 旋压入土式静力触探机制研究[J]. , 2011, 32(S1): 787 -0792 .
[10] 金解放 ,李夕兵 ,殷志强 ,邹 洋. 循环冲击下波阻抗定义岩石损伤变量的研究[J]. , 2011, 32(5): 1385 -1393 .