岩土力学 ›› 2023, Vol. 44 ›› Issue (5): 1385-1394.doi: 10.16285/j.rsm.2022.0779

• 基础理论与实验研究 • 上一篇    下一篇

侧限条件下密实砂土蠕变的颗粒运动特征

高燕1, 2,余骏远3,陈庆1,史天根1   

  1. 1. 中山大学 地球科学与工程学院,广东 珠海 519082;2. 南方海洋科学与工程广东省实验室(珠海),广东 珠海 519082; 3. 浙江大学 海洋学院,浙江 舟山 316021
  • 收稿日期:2022-05-24 接受日期:2022-10-12 出版日期:2023-05-09 发布日期:2023-04-30
  • 作者简介:高燕,女,1984年生,博士,副教授,博士生导师,主要从事土的宏微观特征、蠕变研究方面的工作。
  • 基金资助:
    国家自然科学基金(No. 42072295, No. 41807244),广东省创新创业团队项目(No. 2017ZT07Z066)

Particle motion characteristics of dense sand during creep under lateral confinement

GAO Yan1, 2, YU Jun-yuan3, CHEN Qing1, SHI Tian-gen1   

  1. 1. School of Earth Sciences and Engineering, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; 2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China; 3. Ocean College, Zhejiang University, Zhoushan, Zhejiang 316021, China
  • Received:2022-05-24 Accepted:2022-10-12 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    The work was supported by National Natural Science Foundation of China (42072295, 41807244) and Guangdong Province Innovation and Entrepreneurship Team Project (2017ZT07Z066).

摘要: 任何构筑物长久安全稳定的重要性使得土的时间效应成为该领域学者最为关心的问题之一。基于3D打印杆件的等效砂土颗粒,通过侧限条件下的蠕变试验,采用近景摄影测量与粒子图像测速(particle image velocimetry,简称PIV)技术,从单颗粒运动与颗粒间接触运动的角度出发,探究密实砂土蠕变的内部颗粒运动特征及其与宏观蠕变变形的关系。试验结果表明,3D打印杆件能够很好地反映密实砂土蠕变的宏观变形特性,侧限条件下蠕变变形随时间的增加而增加,随蠕变应力的增加而减小,蠕变变形呈现出蠕变速率减小并趋于稳定的初始蠕变阶段与稳态蠕变阶段。其原因为蠕变最初阶段颗粒整体向下平动,并发生较大转动,颗粒间孔隙明显减小,蠕变变形主要由颗粒间孔隙的压密提供;而后颗粒间孔隙减小不明显,趋于稳定,颗粒发生不规则方向平动,蠕变变形主要由局部的颗粒位置调整与重排列控制,揭示了宏观的蠕变变形与微观的颗粒平动变化有着密切联系。颗粒间的接触运动随着蠕变时间的增加而明显增大。蠕变过程中,接触滚动和接触滑动同时发生,并逐渐集中在某些易发生移动的接触点上。强运动接触点的平均滑动距离与平均滚动距离存在着良好的线性关系,随着时间的增加,平均滑动距离逐渐大于平均滚动距离,表明颗粒间滑动产生体积收缩,控制宏观蠕变变形。

关键词: 密实砂土, 蠕变, 颗粒运动, 平动, 转动

Abstract: The importance of long-term stability of any structure makes the time effect of soil is one of the most concerned problems in geotechnical engineering. In this study, the creep tests on the equivalent sand particles of three-dimensional (3D) printed rods under lateral confined condition are conducted. In the tests, the internal particle motion characteristics of dense sand during creep and its relationship with macroscale creep deformation are explored from the perspective of single particle motion and contact motion between particles based on the close-range photogrammetry and particle image velocimetry (PIV) technology. The test results show that the 3D printed rod can reflect the macroscale deformation characteristics of dense sand during creep well. Under the lateral confinement, the creep deformation increases with the increase in time and decreases with the increase in creep stress, and the creep rate decreases and tend to be stable at the initial and secondary creep stages. This can be explained by that at the initial stage of creep, the particles move downward and rotate greatly which makes the pores between particles obviously reduced, and the creep deformation is mainly induced by the compression of pores between particles; then, the pores between particles do not decrease obviously and tend to be stable, the particles move in irregular directions, which indicates that the creep deformation is mainly controlled by local particle position adjustment and rearrangement. This also reveals that the macroscale creep deformation is closely related to the microscale translational change of particles. The contact motion between particles increases obviously with increasing time. During creep, contact rolling and contact sliding occur simultaneously, and gradually concentrate on some contacts that are easy to move. There is a good linear relationship between the average contact sliding distance and rolling distance of the strong moving contacts, i.e. with the increase of time, the average contact sliding distance is gradually greater than the average contact rolling distance, indicating that the sliding produces volume contraction and controls the macroscale creep deformation.

Key words: dense sand, creep, particle motion, translation, rotation

中图分类号: 

  • TU 411
[1] 黄建, 德圃榕, 姚仰平, 彭仁, 齐吉琳. 基于修正幂律模型的高填方蠕变沉降简化算法[J]. 岩土力学, 2023, 44(7): 2095-2104.
[2] 高琦, 陈保国, 吴森, 袁山, 孙梦尧. 可发性聚笨乙烯板减载条件下高填方箱涵长期受力特征与减载效果[J]. 岩土力学, 2023, 44(7): 2151-2160.
[3] 范金洋, 唐璐宣, 陈结, 杨镇宇, 姜德义, . 基于硬化参量的盐岩蠕变疲劳本构模型[J]. 岩土力学, 2023, 44(5): 1271-1282.
[4] 孙晓明, 姜铭, 王新波, 臧金诚, 高祥, 缪澄宇, . 万福煤矿不同含水率砂岩蠕变力学特性试验研究[J]. 岩土力学, 2023, 44(3): 624-636.
[5] 孙佳政, 傅翼, 仇雅诗, 徐长节, 张恒志, 冯国辉, . RB模式下砂土非极限主动土压力的 离散元模拟与理论研究[J]. 岩土力学, 2023, 44(2): 603-614.
[6] 陈星, 李建林, 邓华锋, 党莉, 刘奇, 王兴霞, 王伟, . 卸荷蠕变条件下软硬相接岩层非协调变形规律研究[J]. 岩土力学, 2023, 44(1): 303-316.
[7] 陈宾, 邓坚, 胡杰铭, 张建林, 张涛, . 钙质砂一维蠕变分形破碎特性宏微观试验研究[J]. 岩土力学, 2022, 43(7): 1781-1790.
[8] 王智超, 罗磊, 田英辉, 张春会, . 非饱和压实土率敏性及蠕变时效特征试验研究[J]. 岩土力学, 2022, 43(7): 1816-1824.
[9] 冷伍明, 邓志龙, 徐方, 张期树, 董俊利, 刘思慧. 基于路基土蠕变效应的路基预应力损失模型研究[J]. 岩土力学, 2022, 43(6): 1671-1682.
[10] 胡惠华, 贺建清, 聂士诚, . 洞庭湖砂纹淤泥质土一维固结蠕变模型研究[J]. 岩土力学, 2022, 43(5): 1269-1276.
[11] 王一伟, 刘 润, 孙若晗, 许泽伟. 基于抗转模型的颗粒材料宏−细观关系研究[J]. 岩土力学, 2022, 43(4): 945-956.
[12] 朱文波, 戴国亮, 王博臣, 龚维明, 王海波, 张宇, . 吸力式沉箱基础底部土体卸荷蠕变及其长期 抗拔承载特性研究[J]. 岩土力学, 2022, 43(3): 669-678.
[13] 于洪丹, 陈卫忠, 卢琛, 杨典森, 杨建平, 王震, . 黏土岩时效变形特性试验与理论研究[J]. 岩土力学, 2022, 43(2): 317-326.
[14] 朱文波, 戴国亮, 王博臣, 龚维明, 孙捷, 胡皓, . 吸力式沉箱底部土体循环特性 及其等效循环蠕变模型研究[J]. 岩土力学, 2022, 43(2): 466-478.
[15] 郭聚坤, 王瑞, 寇海磊, 魏道凯, 卞贵建, 雷胜友, . 基于三维数字图像相关技术钙质砂颗粒运动行为试验研究[J]. 岩土力学, 2022, 43(10): 2785-2798.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .