岩土力学 ›› 2023, Vol. 44 ›› Issue (5): 1512-1529.doi: 10.16285/j.rsm.2022.0831

• 数值分析 • 上一篇    下一篇

隧道底板渐进破裂碎胀大变形:一种新的底鼓机制研究

邓鹏海1,刘泉声1,黄兴2   

  1. 1. 武汉大学 土木建筑工程学院,湖北 武汉 430072;2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071
  • 收稿日期:2022-06-02 接受日期:2022-07-17 出版日期:2023-05-09 发布日期:2023-05-03
  • 通讯作者: 刘泉声,男,1962年生,博士,教授,博士生导师,主要从事岩土工程方面的教学与研究工作。E-mail: liuqs@whu.edu.cn E-mail:phdeng@whu.edu.cn
  • 作者简介:邓鹏海,男,1990年生,博士,副研究员,主要从事岩土工程FDEM数值模拟方面的研究。
  • 基金资助:
    国家自然科学基金资助项目(No. 42107171, No. 41941018, No. U21A20153)。

Progressive fracture and swelling deformation of tunnel floor: a new floor heave mechanism

DENG Peng-hai1, LIU Quan-sheng1, HUANG Xing2   

  1. 1. School of Civil Engineering, Wuhan University, Wuhan, Hubei, 430072, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
  • Received:2022-06-02 Accepted:2022-07-17 Online:2023-05-09 Published:2023-05-03
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (42107171, 41941018, U21A20153).

摘要: 底鼓是深埋高应力软岩隧道常遇灾害,现有底鼓力学机制忽略了隧道开挖导致的围岩应力释放、应力转移和应力集中现象,仅对初始地应力状态进行了分析。因此,鉴于有限元-离散元耦合数值方法(finite-discrete element method,简称FDEM)在模拟岩体材料弹塑性连续变形和断裂失效非连续变形以及破碎块体接触方面的优越性,采用FDEM数值模拟方法研究了隧道底板渐进破裂碎胀大变形演化机制,并研究了地应力侧压系数、围岩体抗拉强度和底板位置对底鼓机制的影响。结果表明:(1)隧道底板底鼓力学机制为围岩的破裂碎胀性大变形,可简述为隧道开挖导致径向应力降低、切向应力升高,当升高的切向应力超过岩体强度时便产生共轭剪切破裂并伴随拉伸断裂,最大切向应力不断向深处完整围岩演化直至与岩体强度达到极限平衡状态,剪切裂隙也随之不断向深处扩展,深部块体推挤浅部块体向隧道空间移动并产生大量空隙,发生体积膨胀现象,造成底鼓灾害;(2)根据地应力侧压系数和围岩体抗拉强度的不同,可归纳出5类不同的底板破坏模式,但都可归结为由于最大切向集中应力造成的破裂碎胀性大变形。修正了原有底鼓力学机制未考虑应力释放、转移和集中等应力演化现象的不足,提出了一种新的基于渐进破裂碎胀性大变形的底鼓力学机制,为隧道底鼓机制的研究提供了一种新视角。

关键词: 底鼓, 破裂碎胀大变形, 软岩隧道, 有限元-离散元方法, 最大切向集中应力

Abstract: Floor heave is a common disaster in deep soft rock tunnel engineering with high in situ stress. The stress release, transfer and concentration in surrounding rock caused by tunnel excavation are often ignored in the current floor heave mechanism, and only the initial in situ stress state is analyzed. Therefore, in view of the superiority of the combined finite-discrete element method (FDEM) in simulating the elastoplastic continuous deformation, the discontinuous deformation (fracture failure) and the contact action between the rock fragments, FDEM is employed to study evolutionary mechanism of the progressive fracture and swelling deformation of tunnel floor. In addition, the influences of the lateral pressure coefficient, the tensile strength of the surrounding rock mass and the position of the floor on the heave mechanism are also investigated. The simulation results indicate that: (1) The floor heave mechanism is the progressive fracture and swelling deformation of tunnel floor, which can be briefly described as that tunnel excavation leads to a release for the radial stress and a concentration for the tangential stress. When the increased tangential stress exceeds the strength of the rock mass, conjugate shear cracks appear and are accompanied by tensile cracks. The maximum tangential stress continues to evolve into the depth of the intact surrounding rock until it reaches an ultimate equilibrium state with the strength of the rock mass, and the shear cracks also continue to propagate into the deep. The deep fragments push the shallow fragments to move into the tunnel space and create a large number of gaps, resulting in volume expansion and floor heave disaster eventually. (2) According to different lateral pressure coefficients and tensile strengths, five types of floor failure modes can be summarized, but all of them can be considered as the fracture and swelling deformation caused by the maximum tangential concentrated stress. The limitations in the previous floor heave mechanism which did not consider stress evolution phenomenon including stress release, transfer and concentration are improved. A new floor heave mechanism based on progressive fracture and swelling deformation is proposed, which provides a new perspective for the study on the floor heave mechanism.

Key words: floor heave, fracture and swelling deformation, soft rock tunnel, finite-discrete element method (FDEM), maximum tangential concentrated stress

中图分类号: 

  • U 451
[1] 邓鹏海, 刘泉声, 黄兴, 潘玉丛, 伯音, . 水平层状软弱围岩破裂碎胀大变形机制 有限元−离散元耦合数值模拟研究[J]. 岩土力学, 2022, 43(S2): 508-523.
[2] 雷升祥, 赵伟. 软岩隧道大变形环向让压支护机制研究[J]. 岩土力学, 2020, 41(3): 1039-1047.
[3] 陈卫忠, 田 云, 王学海, 田洪铭, 曹怀轩, 谢华东, . 基于修正[BQ]值的软岩隧道挤压变形预测[J]. 岩土力学, 2019, 40(8): 3125-3134.
[4] 杨 朋,华心祝,刘钦节,杨 明,成世兴,吴 标,. 深井大断面沿空留巷底板裂隙分形特征动态演化规律试验研究[J]. , 2017, 38(S1): 351-358.
[5] 魏 星,沈 乐,陶志平. 富水软岩隧道突泥塌方及地层沉降的模型试验[J]. , 2012, 33(8): 2291-2296.
[6] 何本国 ,张志强 ,何 川 ,王俊奇 . 构造应力场中的软岩客运专线双线隧道稳定性研究[J]. , 2012, 33(5): 1535-1541.
[7] 初明祥,王清标,夏均民. 采空侧巷道底鼓形成机制与防治技术研究[J]. , 2011, 32(S2): 413-417.
[8] 陈卫忠 ,田洪铭 ,杨阜东 ,耿亚梅. 泡沫混凝土预留变形层对深埋软岩隧道长期稳定性影响研究[J]. , 2011, 32(9): 2577-2583.
[9] 汪 洋,唐雄俊,谭显坤,王元汉. 云岭隧道底鼓机理分析[J]. , 2010, 31(8): 2530-2534.
[10] 李晓红 ,李登新 ,靳晓光 ,顾义磊,. 初期支护对软岩隧道围岩稳定性和位移影响分析[J]. , 2005, 26(8): 1207-1210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .