岩土力学 ›› 2023, Vol. 44 ›› Issue (5): 1501-1511.doi: 10.16285/j.rsm.2022.0838

• 岩土工程研究 • 上一篇    下一篇

土的次非线性对桩基核岛结构三维地震反应的影响

朱升冬1,陈国兴1, 2,陈炜昀3,高文生4,李文彪1   

  1. 1. 南京工业大学 岩土工程研究所,江苏 南京 210009;2. 江苏省土木工程防震技术研究中心,江苏 南京 210009 3. 中山大学土木工程学院,广东 广州 510275;4. 中国建筑科学研究院,北京 100013
  • 收稿日期:2022-06-01 接受日期:2022-08-15 出版日期:2023-05-09 发布日期:2023-05-03
  • 通讯作者: 陈国兴,男,1963年生,博士,教授,博士生导师,主要从事土动力学与岩土地震工程研究。E-mail: gxc6307@163.com E-mail:sd_zhu@sina.cn
  • 作者简介:朱升冬,男,1991年生,博士研究生,主要研究方向为土-结构动力相互作用。
  • 基金资助:
    国家重点研发计划项目(No. 2018YFC1504301)。

Influence of soil secondary nonlinearity on 3D seismic responses of a pile-founded nuclear island structure

ZHU Sheng-dong1, CHEN Guo-xing1, 2, CHEN Wei-yun3, GAO Wen-sheng4, LI Wen-biao1   

  1. 1. Institute of Geotechnical Engineering, Nanjing Tech. University, Nanjing, Jiangsu 210009, China; 2. Civil Engineering and Earthquake Disaster Prevention Center of Jiangsu Province, Nanjing, Jiangsu 210009, China; 3. School of Civil Engineering, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China; 4. China Academy of Building Research, Beijing 100013, China
  • Received:2022-06-01 Accepted:2022-08-15 Online:2023-05-09 Published:2023-05-03
  • Supported by:
    This work was supported by the National Key R&D Project of China (2018YFC1504301).

摘要: 随着核电厂工程建设快速发展,核电厂选址不可避免地要面临土质场地。土-桩-结构动力相互作用对核岛结构的抗震安全性评价具有重要影响。以国内某拟建的AP1000核岛工程为背景,建立土质场地-群桩-筏板基础-核岛结构动力相互作用体系的3D模型,考虑场址的区域地震环境与历史地震活动性,选用近场中强震、中-远场强震和远场大地震的三分量记录作为基岩输入地震动。使用一步法和二步法分别实现对土体真非线性和主非线性的模拟,通过对比这两种方法计算的核岛结构地震反应的差异,可知土的次非线性(soil secondary nonlinearity,简称SSN)对核岛结构地震反应的定量影响,也即SSN效应。发现SSN效应对核岛结构水平向地震反应的影响明显大于对竖向地震反应的影响,SSN效应会导致土质场地-群桩-核岛结构体系变得更“柔”;SSN效应与基岩输入地震动的特性强相关,近场中-强地震作用时SSN效应最强;SSN会显著增大核岛结构的峰值加速度和峰值相对位移反应,在核岛结构的抗震设计中不应忽视SSN效应。

关键词: 核岛结构, 地震反应, 土的次非线性, 土-桩-结构相互作用

Abstract: With the rapid development of nuclear power plant constructions, it has become an unavoidable issue to choose a soil site as the plant site. Soil-pile-structure interaction (SPSI) effect has an important influence on the seismic safety evaluation of a nuclear island structure (NIS). A 3D integrated simulation method is developed to evaluate the seismic responses of a pile-mat-founded AP1000 nuclear-island building system subjected to multidirectional earthquake motions. Considering the regional tectonic setting and historical seismicity around the plant site, a set of three-component recordings for scenarios near-field moderate-strong, moderate-far field strong, and far-field large earthquakes are selected and justified for determining the bedrock shakings used in this study. The whole nonlinearity including both the primary and secondary nonlinearities of soil and only the primary nonlinearity of soil are considered by one-step method and two-step method for performing the 3D response analysis of the SPSI system, respectively. The quantitative influence of soil secondary nonlinearity (SSN) on the NIS seismic responses (i.e., SSN effect) under earthquake scenarios can be obtained by comparing the results obtained from the above two methods. A finding is that the influences of SSN on the horizontal seismic responses of NIS are obviously greater than those of the vertical ones of NIS, and the SSN effect makes the SPSI system more flexible. The SSN effect is strongly related to the characteristics of bedrock shaking scenarios and is the largest under the near-field moderate-strong earthquake scenarios. Given SSN effect can significantly increase the NIS seismic responses, the SSN effect should not be ignored in the NIS seismic design.

Key words: nuclear island structure, seismic response, soil secondary nonlinearity, soil-pile-structure interaction

中图分类号: 

  • TU 473
[1] 贾科敏, 许成顺, 杜修力, 张小玲, 宋佳, 苏卓林, . 可液化倾斜场地的侧向扩展机制分析[J]. 岩土力学, 2023, 44(6): 1837-1848.
[2] 钟紫蓝, 史跃波, 李锦强, 赵 密, 杜修力. 考虑土体动力特征参数相关性的工程场地 随机地震反应分析[J]. 岩土力学, 2022, 43(7): 2015-2024.
[3] 陈国兴, 李磊, 丁杰发, 赵凯, . 巨厚沉积土夹火山岩场地非线性地震反应特性[J]. 岩土力学, 2020, 41(9): 3056-3065.
[4] 潘旦光, 程业, 陈清军. 地下商场结构对地面运动影响的振动台试验研究[J]. 岩土力学, 2020, 41(4): 1134-1145.
[5] 许紫刚, 杜修力, 许成顺, 张驰宇, 蒋家卫. 地下结构地震反应分析中场地瑞利阻尼 构建方法比较研究[J]. 岩土力学, 2019, 40(12): 4838-4847.
[6] 朱 姣,许汉刚,陈国兴, . 苏州第四纪深厚沉积层一维等效线性和非线性地震反应对比分析[J]. , 2018, 39(4): 1479-1490.
[7] 李瑞山,袁晓铭,李程程. 水平成层场地动剪应变与震动速度关系解析[J]. , 2018, 39(10): 3623-3630.
[8] 杨笑梅,赖强林. 二维土层地震反应分析的时域等效线性化解法[J]. , 2017, 38(3): 847-856.
[9] 邢浩洁,李鸿晶,杨笑梅,. 基于切比雪夫谱元模型的成层场地地震反应分析[J]. , 2017, 38(2): 593-600.
[10] 雷素素,高永涛 ,潘旦光 , . 考虑辐射阻尼的土-结构相互作用体系等效输入[J]. , 2016, 37(S1): 583-590.
[11] 陈继彬,赵其华,彭社琴,丁梓涵,喻豪俊. 弃土堆填对斜坡输电塔桩基地震反应的影响[J]. , 2015, 36(8): 2277-2283.
[12] 罗 超 ,楼梦麟 ,桂国庆,. 确定大跨连续刚构桥地震动输入时程方法比较[J]. , 2014, 35(S1): 414-422.
[13] 石丽峰 ,徐 明 , . 整体式桥台地震反应机理分析[J]. , 2014, 35(11): 3289-3297.
[14] 丁海平 ,马俊玲 . 基于场地特征周期的瑞利阻尼确定方法[J]. , 2013, 34(S2): 35-40.
[15] 周国良 ,李小军 ,李铁萍 ,侯春林 . SV波入射下峡谷地形对多支撑大跨桥梁地震反应影响分析[J]. , 2012, 33(5): 1572-1578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .