岩土力学 ›› 2023, Vol. 44 ›› Issue (5): 1435-1444.doi: 10.16285/j.rsm.2022.0841

• 基础理论与实验研究 • 上一篇    下一篇

模块式加筋土挡墙模型试验及静动力学性能研究

王家全1, 2, 3,仲文涛1, 2, 3,黄世斌1, 2, 3,唐毅1, 2, 3   

  1. 1. 广西科技大学 土木建筑工程学院,广西 柳州 545006;2. 广西壮族自治区岩土灾变与生态治理工程研究中心,广西 柳州 545006; 3. 广西高校防灾减灾与预应力技术重点实验室,广西 柳州 545006
  • 收稿日期:2022-06-06 接受日期:2022-09-05 出版日期:2023-05-09 发布日期:2023-04-30
  • 通讯作者: 黄世斌,男,1974年生,硕士,高级实验师,主要从事道路工程方面的研究。E-mail: hsb321@163.com E-mail: wjquan1999@163.com
  • 作者简介:王家全,男,1981年生,博士,教授,主要从事加筋土结构、地基基础工程、土木工程灾害防治等方面的研究。
  • 基金资助:
    国家自然科学基金项目(No. 41962017);广西自然科学基金重点项目(No. 2022GXNSFDA035081);广西高等学校高水平创新团队及卓越学者计划项目(桂教人才[2020]6号);广西研究生教育创新计划项目(No. YCSW2021310)

Experimental study on static and dynamic performances of modular reinforced earth retaining wall

WANG Jia-quan1, 2, 3, ZHONG Wen-tao1, 2, 3, HUANG Shi-bin1, 2, 3, TANG Yi1, 2, 3   

  1. 1. College of Civil and Architectural Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006, China; 2. Guangxi Zhuang Autonomous Region Engineering Research Center of Geotechnical Disaster and Ecological Control, Liuzhou, Guangxi 545006, China; 3. Guangxi University Key Laboratory of Disaster Prevention and Mitigation and Prestress Technology, Liuzhou, Guangxi 545006, China
  • Received:2022-06-06 Accepted:2022-09-05 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41962017), the Natural Science Foundation of Guangxi Province of China (2022GXNSFDA035081), the High Level Innovation Team and Outstanding Scholars Program of Guangxi Institutions of Higher Learning of China ([2020]6) and the Innovation Project of Guangxi Graduate Education (YCSW2021310).

摘要: 加筋土挡墙作为道路路基的一部分,不但受到路面基础设施等静荷载,还承受着车辆行驶所带来的交通荷载。为研究静、动荷载下模块式加筋土挡墙的力学特性及工作性能,开展室内大模型试验,对比分析了加筋土挡墙的沉降及面板水平位移、侧向土压力系数、格栅应变等力学行为的变化规律。结果表明:静、动荷载下挡墙的破坏模式分别以局部剪切破坏和面板挤出破坏为主,格栅的最大应变量分别为1.7% 和4 .5%,均未达到破坏应变;两种荷载下挡墙的极限承载力相等,相比于静载,动载作用下墙顶最大沉降量增大了280%,面板最大水平位移增大了180%;加载板下降过程中四周土体受挤压发生变形,向面板施加额外的水平附加应力,从而导致墙背处的侧向附加应力系数 K高于理论值;动载作用下土颗粒不规则运动,土中动加速度响应受动载幅值的影响较大,靠近墙面处的加速度峰值沿墙高H由上到下逐渐减小。研究成果有助于揭示静载与交通荷载作用下加筋土挡墙的力学行为和破坏机制以及提高模型试验与实际工程的关联程度。

关键词: 模块式加筋土挡墙, 静荷载, 交通荷载, 力学特性

Abstract:

Reinforced earth retaining walls, as part of the roadbed, are not only subjected to static loads such as road infrastructure, but also subjected to traffic loads caused by vehicle movements. To investigate the mechanical properties and working performance of modular reinforced earth retaining walls under static and dynamic loads, the large-scale laboratory model tests were conducted, in which the variation laws of the mechanical behaviors such as the settlement of reinforced earth retaining walls, horizontal displacement of panels, lateral earth pressure coefficient and geogrid strain were compared and analyzed. The results showed that the damage modes of retaining walls under static and dynamic loads are local shear damage and panel extrusion damage, respectively, and the maximum strains of the geogrid are 1.7% and 4.5%, respectively, neither of which reaches the damage strain. The ultimate bearing capacities of the retaining wall under both static and dynamic loads are identical, and the maximum settlement of the top of the wall under dynamic load is increased by 280% and the horizontal displacement of the panel is increased by 180% compared with those under the static load. The deformation of the surrounding soil by extrusion during the descent of the load plate imposes horizontal additional stress on the panel, resulting in a larger lateral additional stress coefficient Kr than the theoretical value at the back of the wall. Under the action of dynamic load, the soil particles move irregularly, and the peak acceleration in the soil increases with the increase in load amplitude and decreases gradually from top to bottom along the height of retaining wall. The research results are important in revealing the mechanical behavior and damage mechanisms of reinforced earth retaining walls under static and traffic loads and in improving the relevance of model tests to actual engineering.

Key words: modular reinforced earth retaining wall, static load, traffic load, mechanical properties

中图分类号: 

  • TU 470
[1] 杨忠平, 李进, 刘浩宇, 张益铭, 刘新荣, . 土石混合体−基岩界面剪切力学特性块石尺寸效应[J]. 岩土力学, 2023, 44(4): 965-974.
[2] 王伟, 张宽, 曹亚军, 陈超, 朱其志, . 层状千枚岩各向异性力学特性与脆性评价研究[J]. 岩土力学, 2023, 44(4): 975-989.
[3] 梁靖宇, 沈万涛, 路德春, 齐吉琳, . 考虑沉积角影响的冻结砂土单轴压缩试验研究[J]. 岩土力学, 2023, 44(4): 1065-1074.
[4] 张平, 任松, 张闯, 吴斐, 隆能增, 李凯鑫, . 循环扰动和高温作用下砂岩的岩爆倾向性及破坏特征研究[J]. 岩土力学, 2023, 44(3): 771-783.
[5] 荣浩宇, 王伟, 李桂臣, 许嘉徽, 梁东旭, . 岩石−锚固剂结构水化失稳微观力学特性[J]. 岩土力学, 2023, 44(3): 784-798.
[6] 王磊, 陈礼鹏, 刘怀谦, 朱传奇, 李少波, 范浩, 张帅, 王安铖, . 不同初始瓦斯压力下煤体动力学特性及其劣化特征[J]. 岩土力学, 2023, 44(1): 144-158.
[7] 陈星, 李建林, 邓华锋, 党莉, 刘奇, 王兴霞, 王伟, . 卸荷蠕变条件下软硬相接岩层非协调变形规律研究[J]. 岩土力学, 2023, 44(1): 303-316.
[8] 孙杰豪, 郭保华, 田世轩, 程坦, . 峰前循环剪切作用下岩石节理剪切力学特性[J]. 岩土力学, 2022, 43(S2): 52-62.
[9] 陈光波, 张俊文, 贺永亮, 张国华, 李谭, . 煤岩组合体峰前能量分布公式推导及试验[J]. 岩土力学, 2022, 43(S2): 130-143.
[10] 周辉, 宋明, 张传庆, 杨凡杰, 路新景, 房后国, 邓伟杰, . 三轴应力下水对泥质砂岩力学特性 影响的试验研究[J]. 岩土力学, 2022, 43(9): 2391-2398.
[11] 马利遥, 胡斌, 陈勇, 崔凯, 丁静, . 不同渗透水压下完整泥页岩剪切−渗流特性研究[J]. 岩土力学, 2022, 43(9): 2515-2524.
[12] 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082.
[13] 刘旭锋, 周扬一, . 多轴压缩条件下层状硬质片岩的力学特性研究[J]. 岩土力学, 2022, 43(8): 2213-2221.
[14] 徐龙飞, 翁效林, WONG Henry, FABBRI Antonin, 朱谭谭, . 温、湿控制生土三轴试验装置的研制与应用[J]. 岩土力学, 2022, 43(8): 2327-2336.
[15] 钟文, 朱文韬, 曾鹏, 黄震, 王晓军, 郭钟群, 胡凯建, . 浸矿开采对离子型稀土基岩力学特性的影响研究[J]. 岩土力学, 2022, 43(6): 1481-1492.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .