岩土力学 ›› 2023, Vol. 44 ›› Issue (5): 1295-1308.doi: 10.16285/j.rsm.2022.0844

• 基础理论与实验研究 • 上一篇    下一篇

考虑横向性能的盾构隧道纵向非线性等效抗弯刚度计算模型

王祖贤1,施成华1,龚琛杰1,曹成勇2,彭铸1,孙影杰1   

  1. 1. 中南大学 土木工程学院,湖南 长沙 410075;2. 深圳大学 土木与交通工程学院,广东 深圳 518060
  • 收稿日期:2022-06-06 接受日期:2022-08-15 出版日期:2023-05-09 发布日期:2023-04-30
  • 通讯作者: 龚琛杰,男,1990年生,博士,副教授,主要从事隧道与地下工程方面的教学与研究。E-mail:gongcj@csu.edu.cn E-mail:csusdwzx@csu.edu.cn
  • 作者简介:王祖贤,男,1994年生,博士研究生,主要从事隧道与地下工程方面的研究。
  • 基金资助:
    国家自然科学基金资助项目(No. 51778636,No. 51908557);湖南省自然科学基金资助项目(No. 2021JJ30837)。

Calculation model of longitudinal nonlinear equivalent bending stiffness of shield tunnel considering its transverse performance

WANG Zu-xian1, SHI Cheng-hua1, GONG Chen-jie1, CAO Cheng-yong2, PENG Zhu1, SUN Ying-jie1   

  1. 1. School of Civil Engineering, Central South University, Changsha, Hunan 410075, China; 2. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
  • Received:2022-06-06 Accepted:2022-08-15 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51778636, 51908557) and the Natural Science Foundation of Hunan Province (2021JJ30837).

摘要: 纵向等效抗弯刚度是采用等效连续化模型进行盾构隧道纵向结构分析的关键参数,其在纵向轴力和弯矩耦合作用下具有明显的非线性特征。在既有盾构隧道非线性抗弯刚度理论的基础上,考虑盾构隧道的横向变形特征,建立考虑盾构隧道横向性能的纵向非线性等效抗弯刚度计算模型,基于椭圆积分严格推导纵向轴力和弯矩耦合作用下盾构隧道在环缝完全闭合、半张开和完全张开3种变形模式下的纵向等效抗弯刚度,并根据中性轴位置方程得到各弯曲模式的临界轴力和弯矩判据,通过与既有解析模型计算结果、模型试验数据和数值计算结果的对比验证了所提出的模型的可靠性。采用该模型开展了纵向轴力和弯矩耦合作用下盾构隧道横向性能对其纵向刚度的影响分析,讨论了理论模型构建时非严格椭圆积分推导的计算误差,并基于该模型提出了附加荷载作用下盾构隧道横纵向变形的耦合分析方法。研究结果表明:该模型的解析推导是准确可靠的;盾构隧道的纵向等效抗弯刚度与其横向刚度密切相关,且为正相关;在压弯状态下盾构隧道纵向等效抗弯刚度随横向刚度的增大而得到明显提升。提出的模型构建了轴力和弯矩耦合作用下盾构隧道横、纵向刚度的匹配性,为盾构隧道横、纵向结构耦合分析搭建了桥梁。

关键词: 盾构隧道, 纵向连续化模型, 横向性能, 轴力弯矩耦合作用, 纵向非线性等效抗弯刚度

Abstract: The longitudinal equivalent bending stiffness (LEBS) of the shield tunnel is a key parameter when the longitudinal structural analyses of the shield tunnel are conducted by the equivalent continuous model. There will be a significantly nonlinear characteristics on the LBSE if the longitudinal axial force and the bending moment are loaded simultaneously. In this paper, based on the existing theories of the nonlinear bending stiffness of the shield tunnel, a calculation model of the longitudinal nonlinear equivalent bending stiffness of the shield tunnel incorporating its transverse performance has been proposed where the transverse deformation characteristics are considered. The LEBSs of the shield tunnel are derived strictly based on the elliptical integral when the circumferential joint of the shield is closed completely, semi open, and open fully respectively due to the coupling action of the longitudinal axial force and bending moment. The criteria of the critical axial force and the critical bending moment to distinguish the three bending modes are deduced with the equations about the neutral axial position. Then the reliability of the proposed model is validated via the results calculated by the existing analytical model, the model test data and the numerical results. After that, the analyses of the influences of the transverse performance of the shield tunnel on its longitudinal stiffness are carried out using the verified model when the shield tunnel suffers the coupling action of the longitudinal axial force and bending moment. Finally, the calculation errors of the simplified deductions are discussed. In addition, a coupled analysis method for the transverse and longitudinal deformations of a shield tunnel induced by additional load is developed based on the established analytical model. The results show that the analytical derivations of the proposed model are accurate and reliable. The LEBS of the shield tunnel is closely related to its transverse stiffness, and there is a positive correlation between the two. The LEBS of the shield tunnel is improved dramatically with the increase of the transverse bending stiffness if there is a compressive-bending state. The matching relationship between the longitudinal and transverse stiffnesses of the shield tunnel subjected to the coupling actions of the longitudinal axial force and bending moment is established with the proposed model, and a bridge to implement the longitudinal and transverse coupling analyses on the structures of the shield tunnel is also built by the proposed model.

Key words: shield tunnel, longitudinal equivalent continuous model, transverse performance, coupling actions of axial force and bending moment, longitudinal nonlinear equivalent bending stiffness

中图分类号: 

  • TU 451
[1] 张治国, 叶铜, 朱正国, PAN Y T, 吴钟腾, . 波浪作用下含气海床内盾构隧道水力及位移响应分析[J]. 岩土力学, 2023, 44(6): 1557-1574.
[2] 钟小春, 黄思远, 槐荣国, 朱诚, 胡一康, 陈旭泉, . 基于浆液浮力试验的盾尾管片纵向上浮特征研究[J]. 岩土力学, 2023, 44(6): 1615-1624.
[3] 刘勇, 周怡晟, 索晓明, 樊浩博, 曹毅泽, 杜志田, . 盾构下穿高铁路基变形规律模型试验研究[J]. 岩土力学, 2023, 44(4): 941-951.
[4] 吴宏, 叶治, 张宇亭, 刘华北, . 穿越不同密实度饱和砂土地层的盾构隧道地震响应三维数值分析[J]. 岩土力学, 2023, 44(4): 1204-1216.
[5] 张志伟, 梁荣柱, 李忠超, 孙廉威, 沈雯, 吴文兵, . 盾尾非对称推力作用下盾构隧道纵向变形分析[J]. 岩土力学, 2023, 44(1): 88-98.
[6] 黎春林. 盾构开挖面三维曲面体破坏模型 及支护力计算方法研究[J]. 岩土力学, 2022, 43(8): 2092-2102.
[7] 王祖贤, 施成华, 龚琛杰, 曹成勇, 刘建文, 彭铸, . 邻近车站(工作井)基坑开挖对下卧 盾构隧道影响的解析计算方法[J]. 岩土力学, 2022, 43(8): 2176-2190.
[8] 杨建平, 王琛, 黄煜诚, 秦川, 陈卫忠, . 水下盾构隧道运营期管片应变增量变化规律研究[J]. 岩土力学, 2022, 43(8): 2253-2262.
[9] 张治国, 叶铜, 张成平, PAN Y T, 吴钟腾, . Stokes二阶波作用下斜坡海床中盾构隧道周围 砂土渗流压力响应分析[J]. 岩土力学, 2022, 43(6): 1635-1659.
[10] 朱旻, 陈湘生, 张国涛, 庞小朝, 苏栋, 刘继强, . 花岗岩残积土硬化土模型参数反演及工程应用[J]. 岩土力学, 2022, 43(4): 1061-1072.
[11] 王祖贤, 施成华, 刘建文. 非对称推力作用下盾构隧道附加响应的解析解[J]. 岩土力学, 2021, 42(9): 2449-2460.
[12] 陈誉升, 丁祖德, 资昊, 刘正初, 计霞飞, . 考虑空洞影响的盾构隧道地震易损性分析[J]. 岩土力学, 2021, 42(12): 3385-3396.
[13] 戴轩, 郭旺, 程雪松, 霍海峰, 刘国光, . 盾构隧道平行侧穿诱发的建筑纵向沉降 实测与模拟分析[J]. 岩土力学, 2021, 42(1): 233-244.
[14] 米博, 项彦勇, . 砂土地层浅埋盾构隧道开挖渗流稳定性的 模型试验和计算研究[J]. 岩土力学, 2020, 41(3): 837-848.
[15] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 奎,高 波. 地铁隧道下穿小河和桥梁的施工方案研究[J]. , 2010, 31(5): 1509 -1516 .
[2] 杨 冰,杨 军,常 在,甘厚义,宋二祥. 土石混合体压缩性的三维颗粒力学研究[J]. , 2010, 31(5): 1645 -1650 .
[3] 肖世国,鲜 飞,王唤龙. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] 叶海林,郑颖人,黄润秋,杜修力,李安洪,许江波. 强度折减动力分析法在滑坡抗滑桩抗震设计中的应用研究[J]. , 2010, 31(S1): 317 -323 .
[5] 张志沛,彭 惠,饶 晓. 软土地基注浆扩散过程数值模拟研究[J]. , 2011, 32(S1): 652 -0655 .
[6] 吴礼舟 ,张利民 ,黄润秋. 成层非饱和土渗流的耦合解析解[J]. , 2011, 32(8): 2391 -2396 .
[7] 刘 润 ,王秀妍 ,刘月辉 ,王武刚. 点支撑缺陷下海底埋管热屈曲分析[J]. , 2011, 32(S2): 64 -69 .
[8] 梁耀哲. 刚性桩复合地基的主动土压力分析[J]. , 2012, 33(S1): 25 -29 .
[9] 韩建新 ,李术才 ,李树忱 ,杨为民 ,汪 雷 . 基于强度参数演化行为的岩石峰后应力-应变关系研究[J]. , 2013, 34(2): 342 -346 .
[10] 黄 达 ,岑夺丰 ,黄润秋 . 单裂隙砂岩单轴压缩的中等应变率效应颗粒流模拟[J]. , 2013, 34(2): 535 -545 .