岩土力学 ›› 2023, Vol. 44 ›› Issue (5): 1405-1415.doi: 10.16285/j.rsm.2022.0898

• 基础理论与实验研究 • 上一篇    下一篇

桥梁桩基穿越溶洞的荷载传递机制试验研究

陈慧芸1, 2,冯忠居2,白少奋2,董建松3,夏承明4,蔡杰3   

  1. 1. 西华大学 建筑与土木工程学院,四川 成都 610039;2. 长安大学 公路学院,陕西 西安 710064; 3. 福建省交通建设质量安全中心,福建 福州 350001;4. 三明莆炎高速公路有限责任公司,福建 三明 353000
  • 收稿日期:2022-06-13 接受日期:2022-11-16 出版日期:2023-05-09 发布日期:2023-04-30
  • 通讯作者: 冯忠居,男,1965年生,博士,教授,博士生导师,工学博士,主要从事桥梁基础工程及地基处理等方面研究。E-mail:ysf@gl.chd.edu.cn E-mail:Victoria_CHY@163.com
  • 作者简介:陈慧芸,女,1995年生,博士研究生,讲师,主要从事桥梁基础工程方面研究。
  • 基金资助:
    国家重点研发计划(No. 2018YFC1504801-04);福建省交通运输科技项目(No. 2018Y032)。

Experimental study on load transfer mechanism of bridge pile foundation passing through karst cave

CHEN Hui-yun1, 2, FENG Zhong-ju2, BAI Shao-fen2, DONG Jian-song3, XIA Cheng-ming4, CAI Jie3   

  1. 1. School of Architecture and Civil Engineering, Xihua University, Chengdu, Sichuan 610039, China; 2. School of Highway, Chang’an University, Xi’an, Shaanxi 710064, China; 3. Fujian Transportation Construction Quality and Safety Center, Fuzhou, Fujian 350001, China; 4. Sanming Puyan Highway Co., Ltd., Sanming, Fujian 353000, China
  • Received:2022-06-13 Accepted:2022-11-16 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work was supported by the National Key Research and Development Program of China (2018YFC1504801-04) and Fujian Provincial Transportation Science and Technology Project (2018Y032).

摘要: 为探明公路桥梁桩基穿越溶洞的荷载传递机制,开展了回填法处理溶洞时桩基荷载传递机制现场试验,结合数值仿真方法,研究了回填法处治溶洞时穿越不同高度溶洞的桩基竖向承载特性和荷载传递机制,提出了不同洞高下回填材料引起的桩侧负摩阻力最大值及其分布范围占比的变化规律。结果表明:岩溶区桩侧负摩阻力的产生受溶洞类型的影响,填充型溶洞桩侧土体沉降较小,可为桩基提供较小的正摩阻力;非填充型溶洞桩侧土体沉降较大,桩侧表面会产生负摩阻力;采用回填法处理溶洞后,穿越溶洞桥梁桩基的竖向极限承载力随洞高增加而逐渐减小;洞高由3 m增加至12 m时,桩基竖向极限承载力对应的桩侧负摩阻力分布范围占洞高的比例由0%增加至27.14%。建议在实际设计中采用回填法处理溶洞时,应考虑穿过溶洞桥梁桩基在溶洞范围产生的桩侧负摩阻力对桩基竖向承载特性的影响;洞高为3~12 m时,建议在溶洞顶面以下0、0.106H、0.214H、0.271H(H为洞高)范围内按负摩阻力计算桩基承载能力,以确保溶洞处治后回填材料固结沉降期间桥梁桩基承载安全。

关键词: 桥梁工程, 溶洞, 桩基础荷载传递机制, 现场试验, 负摩阻力

Abstract: In order to understand the load transfer mechanism of highway bridge pile foundation passing through karst cave, the field test of bridge pile foundation treated by backfilling method is carried out. Combined with the numerical simulation method, the vertical bearing characteristics and load transfer mechanism of pile foundation passing through karst caves with different heights are studied, and the variation law of the maximum value of the negative skin friction caused by backfilling material in different cave heights and its proportion of distribution range are discussed. The results show that the negative skin friction in the karst area is affected by the type of karst cave, i.e. when the settlement of the soil on the side of the pile of the filled karst cave is smaller, the pile side can provide less positive friction for the pile foundation; when the settlement of the soil of the pile side of the unfilled karst cave is larger, the pile side can produce negative friction. After the karst cave is treated by the backfilling method, the vertical ultimate bearing capacity of the bridge pile foundation passing through the karst cave decreases with the increase of the cave height, e.g. when the cave height increases from 3 m to 12 m, the distribution range of the negative skin friction corresponding to the vertical ultimate bearing capacity of pile foundation increases from 0% to 27.14%. It is suggested that in the actual design, when the backfilling method is used to deal with the karst cave, the influence of the negative skin friction caused by the pile foundation passing through the karst cave on the vertical bearing characteristics of the pile foundation should be considered. When the height of karst cave is 3–12 m, the bearing capacity of the pile foundation should be calculated according to negative skin friction in the ranges of 0, 0.106H, 0.214H and 0.271H (H is the cave height) below the top surface of karst cave, so as to ensure the bearing safety of bridge pile foundation during the consolidation and settlement of backfill materials after cave treatment.

Key words: bridge engineering, karst cave, load transfer mechanism of pile foundation, field test, negative friction

中图分类号: 

  • TU 473
[1] 闫志晓, 李雨润, 王东升, 王永志, . 覆水砂土场地中桥梁群桩基础地震响应离心试验研究[J]. 岩土力学, 2023, 44(3): 861-872.
[2] 彭文哲, 赵明华, 杨超炜, 赵衡, . 斜坡桩水平循环特性模型试验及有限杆单元解[J]. 岩土力学, 2023, 44(2): 381-391.
[3] 金佳旭, 朱磊, 刘磊, 陈亿军, 姚远, 高腾飞, 李若欣, . 填埋场单井注气气体压力监测试验及预测模型[J]. 岩土力学, 2023, 44(1): 259-267.
[4] 高磊, 韩川, 黄坚, 王洋, 周乐, . 基于BOTDR的能源桩现场试验与承载特性分析[J]. 岩土力学, 2022, 43(S1): 117-126.
[5] 彭文哲, 赵明华, 杨超炜, 刘亚楠. 基于有限杆单元法的斜桩受力变形分析[J]. 岩土力学, 2022, 43(S1): 650-657.
[6] 黄福云, 周志明, 庄一舟, 刘帆, 刘名琦, . 整体桥高性能混凝土桩−土相互作用试验研究[J]. 岩土力学, 2022, 43(3): 591-601.
[7] 陶志刚, 郭爱鹏, 何满潮, 张瑨, 夏敏, 王鼎, 李梦楠, 朱珍, . 微观负泊松比锚杆静力学特性及其工程应用研究[J]. 岩土力学, 2022, 43(3): 808-818.
[8] 常洲, 张留俊, 黄平明, 晏长根, 贾卓龙, 徐合清, . 炭质页岩的颗粒破碎及其路用性能试验研究[J]. 岩土力学, 2022, 43(11): 3117-3126.
[9] 夏洋洋, 方宏远, 张超, 潘艳辉, 翟文博, 石明生, . 顶管施工对新型复合装配式支护工作井的 力学响应分析[J]. 岩土力学, 2022, 43(10): 2799-2808.
[10] 黄福云, 何凌峰, 单玉麟, 胡晨曦, 周志明, . 整体式桥台−混凝土桩−土相互作用拟静力试验[J]. 岩土力学, 2021, 42(7): 1803-1814.
[11] 王力, 李高, 陈勇, 谭建民, 王世梅, 郭飞, . 赣南地区人工切坡降雨致灾机制现场模型试验[J]. 岩土力学, 2021, 42(3): 846-854.
[12] 杨军, 孙晓立, 卞德存, 邵继喜, . 基于平行地震波法探测桩基缺陷的试验研究[J]. 岩土力学, 2021, 42(3): 874-881.
[13] 任连伟, 任军洋, 孔纲强, 刘汉龙, . 冷热循环下PHC能量桩热力响应 和承载性能现场试验[J]. 岩土力学, 2021, 42(2): 529-536.
[14] 高盟, 张致松, 王崇革, 田抒平, . 竖向激振力下WIB-Duxseal联合隔振试验研究[J]. 岩土力学, 2021, 42(2): 537-546.
[15] 季伟伟, 孔纲强, 刘汉龙, 杨庆, . 软塑黄土地区隧道仰拱热力响应特性现场试验[J]. 岩土力学, 2021, 42(2): 558-564.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .