岩土力学 ›› 2023, Vol. 44 ›› Issue (5): 1260-1270.doi: 10.16285/j.rsm.2022.0900
李满1, 2,刘先珊1, 2, 3,潘玉华2,乔士豪2,郝梓宇2,钱磊2,罗晓雷2
LI Man1, 2, LIU Xian-shan1, 2, PAN Yu-hua2, QIAO Shi-hao2, HAO Zi-yu2, QIAN Lei2, LUO Xiao-lei2
摘要: 砂岩热储层的改造和长期稳定性评价对地热能源开发具有重要意义。研究了裂隙砂岩在0~8次热冲击作用下的力学特性。试验结果表明:随着热冲击次数的增加,两种冷却方式下裂隙砂岩的纵波波速、单轴抗压强度和弹性模量均逐渐减小。与水冷却相比,空气冷却对裂隙砂岩物理力学特性的劣化较弱,单轴抗压强度和弹性模量与热冲击次数呈现较好的指数函数关系。纵波波速和弹性模量均能很好地表征裂隙砂岩随热冲击次数的损伤,其中首次热冲击对裂隙砂岩力学性能的损伤最为严重,且当热冲击次数超过4次时,热冲击对裂隙砂岩力学特性的损伤显著减缓。此外,裂隙砂岩单轴抗压强度和弹性模量与纵波波速具有很好的指数函数关系。最后,在COMSOL Multiphysics中模拟了砂岩试样热冲击过程,并讨论了对流换热系数和预制裂纹对砂岩内部温度场和应力场的影响,揭示了热冲击作用下砂岩产生热裂纹的机制。
中图分类号:
[1] | 罗宇杰, 张杨, 刘容妃, 胡大伟, 周辉, 肖海斌, . 基于毫米压痕测试获取致密砂岩弹性模量的研究[J]. 岩土力学, 2023, 44(4): 1089-1099. |
[2] | 孙晓明, 姜铭, 王新波, 臧金诚, 高祥, 缪澄宇, . 万福煤矿不同含水率砂岩蠕变力学特性试验研究[J]. 岩土力学, 2023, 44(3): 624-636. |
[3] | 张平, 任松, 张闯, 吴斐, 隆能增, 李凯鑫, . 循环扰动和高温作用下砂岩的岩爆倾向性及破坏特征研究[J]. 岩土力学, 2023, 44(3): 771-783. |
[4] | 陈星, 李建林, 邓华锋, 党莉, 刘奇, 王兴霞, 王伟, . 卸荷蠕变条件下软硬相接岩层非协调变形规律研究[J]. 岩土力学, 2023, 44(1): 303-316. |
[5] | Muhammad Usman Azhar, 周 辉, 杨凡杰, 高阳, 朱勇, 路新景, 房后国, 耿轶君, . 软弱泥质砂岩地层中输水隧洞稳定性研究[J]. 岩土力学, 2022, 43(S2): 626-639. |
[6] | 侯永强, 尹升华, 杨世兴, 张敏哲, 刘洪斌, . 动态荷载下胶结充填体力学响应及能量 损伤演化过程研究[J]. 岩土力学, 2022, 43(S1): 145-156. |
[7] | 周辉, 宋明, 张传庆, 杨凡杰, 路新景, 房后国, 邓伟杰, . 三轴应力下水对泥质砂岩力学特性 影响的试验研究[J]. 岩土力学, 2022, 43(9): 2391-2398. |
[8] | 屈永龙, 杨更社, 奚家米, 何晖, 丁潇, 张猛, . 低温−加载作用下白垩系砂岩的变形 破坏特性试验研究[J]. 岩土力学, 2022, 43(9): 2431-2442. |
[9] | 贺桂成, 谢元辉, 李咏梅, 李春光, 唐孟媛, 张志军, 伍玲玲. 微生物胶结砂岩型铀矿砂的抗渗性能试验研究[J]. 岩土力学, 2022, 43(9): 2504-2514. |
[10] | 张慧梅, 王云飞. 冻融红砂岩损伤演化多尺度分析[J]. 岩土力学, 2022, 43(8): 2103-2114. |
[11] | 杨科, 张寨男, 池小楼, 吕鑫, 魏祯, 刘文杰, . 循环载荷下含水砂岩裂纹演化与损伤特征试验研究[J]. 岩土力学, 2022, 43(7): 1791-1802. |
[12] | 彭守建, 张倩文, 许江, 陈奕安, 陈灿灿, 曹琦, 饶豪魁, . 基于三维数字图像相关技术的砂岩渗流-应力 耦合变形局部化特性试验研究[J]. 岩土力学, 2022, 43(5): 1197-1206. |
[13] | 王燕星, 李驰, 葛晓东, 高利平, . 黄河流域内蒙古段砒砂岩风化土微生物 矿化改良的试验研究[J]. 岩土力学, 2022, 43(3): 708-718. |
[14] | 田佳丽, 王惠民, 刘星星, 向雷, 盛金昌, 罗玉龙, 詹美礼. 考虑不同尺度孔隙压缩敏感性的 砂岩渗透特性研究[J]. 岩土力学, 2022, 43(2): 405-415. |
[15] | 金解放, 徐 虹, 余 雄, 廖占象. 动荷载和含水率对红砂岩破坏及能耗特性的影响[J]. 岩土力学, 2022, 43(12): 3231-3240. |
|