岩土力学 ›› 2023, Vol. 44 ›› Issue (3): 861-872.doi: 10.16285/j.rsm.2022.0967

• 基础理论与实验研究 • 上一篇    下一篇

覆水砂土场地中桥梁群桩基础地震响应离心试验研究

闫志晓1,李雨润1,王东升1,王永志2   

  1. 1. 河北工业大学 土木与交通学院,天津 300401;2. 中国地震局工程力学研究所 地震工程与工程振动重点实验室,黑龙江 哈尔滨 150080
  • 收稿日期:2022-06-24 接受日期:2022-09-18 出版日期:2023-03-21 发布日期:2023-03-24
  • 通讯作者: 李雨润,男,1978年生,博士,教授,博士生导师,主要从事岩土工程、基础工程方面的研究与教学工作。E-mail: iemlyr7888@hebut.edu.cn E-mail:yzxupup@163.com
  • 作者简介:闫志晓,男,1995年生,博士生,主要从事土动力及桩基抗震研究。
  • 基金资助:
    国家自然科学基金项目(No.51778207);河北省教育厅在读研究生创新能力培养资助项目(No.CXZZBS2022038);中国地震局工程力学研究所基本科研业务费专项资助项目(No.2021D02)

Centrifugal experimental study on seismic response of bridge pile group foundation in overlaying water sandy field

YAN Zhi-xiao1, LI Yu-run1, WANG Dong-sheng1, WANG Yong-zhi2   

  1. 1. College of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China; 2. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin, Heilongjiang 150080, China
  • Received:2022-06-24 Accepted:2022-09-18 Online:2023-03-21 Published:2023-03-24
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51778207), the Graduate Student Innovation Ability Training Project of Hebei Education Department (CXZZBS2022038) and the Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration (2021D02).

摘要: 为探究覆水饱和砂土场地中土−群桩基础−桥梁结构体系动力相互作用规律,自主设计并制作了直(斜)群桩基础−桥梁结构物理相似模型,开展了不同地震动强度和不同特性地震波输入下的离心机振动台试验,分析了群桩基础−桥梁结构动力特性指标,探究了覆水饱和砂土地基超孔隙水压力发展规律和桩−土相互作用动力响应特性。研究结果表明:覆水的存在对地基土−桥梁结构体系的基本周期和阻尼影响很小,但会导致直群桩基础桥梁结构的振动幅值增加20%,而斜群桩基础桥梁结构的振动幅值降低10%;斜群桩基础模型阻尼比是直群桩基础模型的2倍。上覆水导致饱和砂土地基由受低频振动液化深度更大变为受高频振动地基液化深度更大,同时导致小震作用下促进超孔隙水压力发展,而大震作用下则反之。上覆水会增大桥梁上部结构的动力响应和桩身弯矩。上述研究结果可为覆水场地中桥梁工程抗震设计提供关键参考依据。

关键词: 桥梁工程, 抗震性能, 离心机振动台试验, 覆水饱和砂土场地, 群桩基础

Abstract: In order to explore the dynamic interaction of the soil-pile group foundation-bridge structure system in overlaying water-saturated sand fields, a physical similarity model of the straight (oblique) pile group foundation-bridge structure was designed and fabricated. Centrifuge shaking table tests with seismic wave inputs of different ground motion intensities and characteristics were conducted. The dynamic characteristics indexes of pile group foundation-bridge structure were analyzed, and the development of excess pore water pressure in the overlaying water-saturated sand foundation and the dynamic response characteristics of pile-soil interaction was also investigated. The results indicated that the presence of overlaying water had little influence on the basic cycle and damping of the foundation soil-bridge structure system, but caused a 20% increase in the vibration amplitude of the straight pile group foundation-bridge structure system and a 10% decrease in the vibration amplitude of the oblique pile group foundation-bridge structure system. The damping ratio of the oblique pile group foundation model was twice as high as that of the straight pile group foundation model. The overlaying water caused the saturated sand foundation to change from a larger liquefaction depth under low-frequency vibration to a larger liquefaction depth under high-frequency vibration, meanwhile, it led to promote the development of excess pore water pressure under small earthquakes and vice versa under large earthquakes. Furthermore, the overlaying water would lead to an increase in the dynamic response of the bridge superstructure and the pile bending moment. The above research results could provide an essential reference for the seismic design of bridge engineering in overlaying water sand fields.

Key words: bridge engineering, seismic performance, centrifuge shaking table test, overlaying water-saturated sand field, pile group foundation

中图分类号: 

  • TU470
[1] 陈慧芸, 冯忠居, 白少奋, 董建松, 夏承明, 蔡杰, . 桥梁桩基穿越溶洞的荷载传递机制试验研究[J]. 岩土力学, 2023, 44(5): 1405-1415.
[2] 王丽艳, 吉文炜, 陶云翔, 唐跃, 王炳辉, 蔡晓光, 张雷, . 格栅条带式加筋废旧轮胎胎面挡土墙 抗震性能试验研究[J]. 岩土力学, 2023, 44(4): 931-940.
[3] 彭文哲, 赵明华, 杨超炜, 赵衡, . 斜坡桩水平循环特性模型试验及有限杆单元解[J]. 岩土力学, 2023, 44(2): 381-391.
[4] 彭文哲, 赵明华, 杨超炜, 刘亚楠. 基于有限杆单元法的斜桩受力变形分析[J]. 岩土力学, 2022, 43(S1): 650-657.
[5] 黄福云, 周志明, 庄一舟, 刘帆, 刘名琦, . 整体桥高性能混凝土桩−土相互作用试验研究[J]. 岩土力学, 2022, 43(3): 591-601.
[6] 徐琨鹏, 景立平, 程新俊, 梁海安, 宾佳. 基于边界位移法的地下结构推覆试验可行性研究[J]. 岩土力学, 2022, 43(1): 127-138.
[7] 黄福云, 何凌峰, 单玉麟, 胡晨曦, 周志明, . 整体式桥台−混凝土桩−土相互作用拟静力试验[J]. 岩土力学, 2021, 42(7): 1803-1814.
[8] 韩润波, 许成顺, 杜修力, 许紫刚, . 土-地下结构体系拟静力推覆试验 模型箱类型的优选[J]. 岩土力学, 2021, 42(2): 462-470.
[9] 徐超, 罗敏敏, 任非凡, 沈盼盼, 杨子凡. 加筋土柔性桥台复合结构抗震性能的试验研究[J]. 岩土力学, 2020, 41(S1): 179-186.
[10] 张卢明, 周勇, 范刚, 蔡红雨, 董云. 强震作用下核安全级反倾层状软岩高陡边坡组合支挡结构抗震性能研究与加固效果评价[J]. 岩土力学, 2020, 41(5): 1740-1749.
[11] 李平, 张宇东, 薄涛, 辜俊儒, 朱胜. 基于离心机振动台试验的梯形河谷场地 地震动效应研究[J]. 岩土力学, 2020, 41(4): 1270-1278.
[12] 赵明华, 彭文哲, 杨超炜, 肖尧, 刘亚楠. 斜坡地基刚性桩水平承载力上限分析[J]. 岩土力学, 2020, 41(3): 727-735.
[13] 高广运, 谢伟, 陈娟, 赵宏, . 高铁运行引起的高架桥群桩基础地面振动衰减分析[J]. 岩土力学, 2019, 40(8): 3197-3206.
[14] 周和祥, 马建林, 张凯, 罗朝洋, 杨柏, . 沉井下沉阻力离心模型试验研究[J]. 岩土力学, 2019, 40(10): 3969-3976.
[15] 张泽林, 吴树仁, 王 涛, 唐辉明, 梁昌玉, . 地震波振幅对黄土-泥岩边坡动力响应规律的影响[J]. 岩土力学, 2018, 39(7): 2403-2412.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李 奎,高 波. 地铁隧道下穿小河和桥梁的施工方案研究[J]. , 2010, 31(5): 1509 -1516 .
[2] 杨 冰,杨 军,常 在,甘厚义,宋二祥. 土石混合体压缩性的三维颗粒力学研究[J]. , 2010, 31(5): 1645 -1650 .
[3] 肖世国,鲜 飞,王唤龙. 一种微型桩组合抗滑结构内力分析方法[J]. , 2010, 31(8): 2553 -2559 .
[4] 叶海林,郑颖人,黄润秋,杜修力,李安洪,许江波. 强度折减动力分析法在滑坡抗滑桩抗震设计中的应用研究[J]. , 2010, 31(S1): 317 -323 .
[5] 张志沛,彭 惠,饶 晓. 软土地基注浆扩散过程数值模拟研究[J]. , 2011, 32(S1): 652 -0655 .
[6] 吴礼舟 ,张利民 ,黄润秋. 成层非饱和土渗流的耦合解析解[J]. , 2011, 32(8): 2391 -2396 .
[7] 刘 润 ,王秀妍 ,刘月辉 ,王武刚. 点支撑缺陷下海底埋管热屈曲分析[J]. , 2011, 32(S2): 64 -69 .
[8] 梁耀哲. 刚性桩复合地基的主动土压力分析[J]. , 2012, 33(S1): 25 -29 .
[9] 韩建新 ,李术才 ,李树忱 ,杨为民 ,汪 雷 . 基于强度参数演化行为的岩石峰后应力-应变关系研究[J]. , 2013, 34(2): 342 -346 .
[10] 黄 达 ,岑夺丰 ,黄润秋 . 单裂隙砂岩单轴压缩的中等应变率效应颗粒流模拟[J]. , 2013, 34(2): 535 -545 .