岩土力学 ›› 2023, Vol. 44 ›› Issue (6): 1557-1574.doi: 10.16285/j.rsm.2022.1009

• 基础理论与实验研究 •    下一篇

波浪作用下含气海床内盾构隧道水力及位移响应分析

张治国1, 2, 3, 4, 5,叶铜1,朱正国2,PAN Y T5,吴钟腾4   

  1. 1. 上海理工大学 环境与建筑学院,上海 200093;2. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室, 河北 石家庄 050043;3. 国家海洋局北海预报中心 山东省海洋生态环境与防灾减灾重点实验室,山东 青岛 266061;4. 自然资源部丘陵山地地质灾害防治重点实验室 福建省地质灾害重点实验室,福建 福州 350002;5. 新加坡国立大学 土木与环境工程系,新加坡 119077
  • 收稿日期:2022-07-01 接受日期:2022-10-13 出版日期:2023-06-14 发布日期:2023-06-14
  • 作者简介:张治国,男,1978年生,博士,博士后,教授,博导,主要从事地下工程、海洋地质工程等方面的研究工作。
  • 基金资助:
    国家自然科学基金(No.41977247,No.42177145);省部共建交通工程结构力学行为与系统安全国家重点实验室课题(No.KF2022-07);自然资源部丘陵山地地质灾害防治重点实验室课题(No.FJKLGH2020K004);山东省海洋生态环境与防灾减灾重点实验室课题(No.201703)。

Hydraulic and displacement response analysis of shield tunnel in gassy seabed under wave action

ZHANG Zhi-guo1, 2, 3, 4, 5, YE Tong1, ZHU Zheng-guo2, PAN Y T5, WU Zhong-teng4   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation, North Sea Marine Forecast Center of State Oceanic Administration, Qingdao, Shandong 266061, China; 4. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources, Fujian Key Laboratory of Geohazard Prevention, Fuzhou, Fujian 350002, China; 5. Department of Civil and Environmental Engineering, National University of Singapore, Singapore 119077
  • Received:2022-07-01 Accepted:2022-10-13 Online:2023-06-14 Published:2023-06-14
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41977247, 42177145), the Opening Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures (KF2022-07), the Opening Fund of Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources (FJKLGH2020K004) and the Opening Fund of Shandong Provincial Key Laboratory of Marine Ecological Environment and Disaster Prevention and Mitigation (201703).

摘要: 海底沉积物中气体通常以不连续的气相存在于海床土体中,既有理论研究较少考虑含气海床环境,波浪动压力引起的渗透力导致隧道衬砌附加变形也较少见之于文献。首先,通过Biot固结方程获得了气−水混合流控制方程,结合适用于浅水区的Stokes二阶非线性波浪理论获得了隧道衬砌周围的孔隙水压响应;其次,采用叠加法分别考虑了由波浪引起的海床土体内振荡孔压和累积孔压,并以衬砌周围可能出现的最大孔隙水压及渗透力作为最不利荷载工况,结合指数衰减模型描述衬砌劣化效应,获得了考虑波浪渗透力作用下隧道衬砌服役期间位移变化规律;最后,通过试验监测数据及数值模拟验证了本研究理论解析的准确性,通过对波浪周期、水深,海床剪切模量、海床含气量,隧道半径、埋深、衬砌劣化系数进行分析。结果表明:海床含气量增大能降低波浪压力向海床内部传播,并减弱超静孔压的累积效应;随着海床含气量逐渐增大,隧道衬砌周围孔压极值不断减小且出现相位滞后,隧道外渗透力、衬砌径向位移均随着海床含气量增加而明显降低;波浪周期增大、海水深度降低均能明显使海床表面的波浪压力增大,诱发隧道衬砌周围产生较大的渗透力,从而发生较大径向位移,小半径、浅埋深能够有效降低累积孔压造成的渗透力影响;当衬砌劣化系数相同时,含气量越低的海床内波浪引起的超静孔隙水压影响越显著,衬砌产生较大径向位移,不利于隧道的正常服役。

关键词: 海底盾构隧道, 含气海床, 累积孔压, 渗透力, 衬砌劣化

Abstract: The gas in the seabed sediment exists in the seabed soil as discontinuous gas phase, existing theoretical studies seldom consider the gassy seabed environment, and there are few studies on the additional deformation of the tunnel lining caused by the seepage force induced by the wave dynamic pressure. Firstly, the control equation of gas-water mixed flow is obtained by Biot consolidation equation, and the pore water pressure response around the tunnel lining is obtained by combining with Stokes second-order nonlinear wave theory suitable for shallow water. Secondly, the superposition method is used to consider the oscillatory pore pressure and cumulative pore pressure in the seabed soil caused by waves, and the maximum pore water pressure and seepage force that may appear around the lining are taken as the most unfavorable load cases. The displacement variation law of the tunnel lining during service under the action of wave seepage force is obtained in combination with the exponential decay model to describe the lining deterioration effect. Finally, accuracy of the theoretical analysis in this paper is verified by the experimental monitoring data and numerical simulation. Parameter analyses are made on the wave period, water depth, seabed shear modulus, seabed gas content, tunnel radius, burial depth and lining deterioration. The cumulative effect of wave pressure propagating into the seabed and excess pore water pressure can be weakened when the seabed gas content increases. The extreme pore pressure around the tunnel lining decreases and the phase lag occurs with the increase of the gas content in the seabed. The external seepage force and the radial displacement of the lining decrease significantly with increasing the gas content in the seabed. Larger wave period and shallower seawater depth can significantly increase the wave pressure on the seabed surface, and induce greater seepage force around the tunnel lining, resulting in greater radial displacement. Reducing the radius and depth of the tunnel can effectively weaken the influence of the seepage force caused by the accumulated pore water pressure. When the lining deterioration coefficient is constant, the influence of excess pore water pressure caused by waves in the seabed with lower gas content is more significant, and the lining produces large radial displacement, which is not conducive to the normal service of the tunnel.

Key words: subsea shield tunnel, gassy seabed, cumulative pore pressure, seepage force, lining deterioration

中图分类号: 

  • U459.5
[1] 王元战, 龚晓龙, 王轩, 陈艳萍, 谢涛, . 偏压固结下碱渣土循环累积孔压及强度弱化规律研究[J]. 岩土力学, 2023, 44(2): 373-380.
[2] 张治国, 叶铜, 张成平, PAN Y T, 吴钟腾, . Stokes二阶波作用下斜坡海床中盾构隧道周围 砂土渗流压力响应分析[J]. 岩土力学, 2022, 43(6): 1635-1659.
[3] 袁帅, 冯德旺, 张森豪, 邢运鹏, 柯尊启, . 考虑水力参数空间变异性的盾构 隧道开挖面稳定性分析[J]. 岩土力学, 2022, 43(11): 3153-3162.
[4] 刘昌, 张顶立, 张素磊, 房倩, 方黄城, . 考虑围岩流变及衬砌劣化特性的隧道 长期服役性能解析[J]. 岩土力学, 2021, 42(10): 2795-2807.
[5] 安笑, 潘华利, 欧国强, 孔玲, 李炳志, . 恒定渗流作用泥石流碎屑物质起动判别模型研究[J]. 岩土力学, 2020, 41(S1): 115-122.
[6] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[7] 尹晓萌, 晏鄂川, 刘旭耀, 李兴明, . 土体稳定性计算中地下水作用力探讨[J]. 岩土力学, 2019, 40(1): 156-164.
[8] 吕玺琳,方 航,张甲峰 ,. 循环交通荷载下软土路基长期沉降理论解[J]. , 2016, 37(S1): 435-440.
[9] 蒋中明 ,龙 芳 ,熊小虎 ,冯树荣 ,钟辉亚,. 边坡稳定性分析中的渗透力计算方法考证[J]. , 2015, 36(9): 2478-2486.
[10] 许 渊,李 亮,邹金锋,袁 臻. 考虑轴向力和渗透力时圆形隧道广义Hoek-Brown解[J]. , 2015, 36(10): 2837-2846.
[11] 李 男 ,黄 博 ,凌道盛 ,汪清静 , . 斜椭圆应力路径下饱和松砂动力特性试验研究[J]. , 2015, 36(1): 156-162.
[12] 高 健,张义同. 考虑盾构掘进速度的隧道掘进面稳定性分析[J]. , 2010, 31(7): 2232-2237.
[13] 毛昶熙,段祥宝,吴良骥. 砂砾土各级颗粒的管涌临界坡降研究[J]. , 2009, 30(12): 3705-3709.
[14] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935-2939.
[15] 刘 晓,唐辉明,罗红明,陈守义. 对滑坡防治工程相关规范中渗流问题的研究[J]. , 2009, 30(10): 3173-3180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .