岩土力学 ›› 2023, Vol. 44 ›› Issue (6): 1593-1603.doi: 10.16285/j.rsm.2022.1193

• 基础理论与实验研究 • 上一篇    下一篇

石灰−偏高岭土改良遗址土强度劣化特性的冻融循环效应

李新明1, 2,张浩扬1, 2,武迪1, 2,郭砚睿1, 2,任克彬3,谈云志4   

  1. 1. 中原工学院 建筑工程学院,河南 郑州 450007;2. 中原工学院 河南省环境岩土工程与地下工程灾害控制工程研究中心,河南 郑州 450007; 3. 河南省文物建筑保护研究院,河南 郑州 450007;4. 三峡大学 三峡库区地质灾害教育部重点实验室,湖北 宜昌 443002
  • 收稿日期:2022-08-01 接受日期:2022-10-23 出版日期:2023-06-14 发布日期:2023-06-14
  • 作者简介:李新明,男,1987年生,博士,副教授,主要从事特殊土土力学及土遗址保护方面的研究工作。
  • 基金资助:
    河南省高等学校青年骨干教师资助计划项目(No.2019GGJS142);河南省高等学校重点科研项目计划基础研究专项(No.20ZX009);国家自然科学基金(No.51509274);河南省科技攻关项目(No.202102310584,No.222102320060)。

Strength deterioration characteristics of lime-metakaolin improved earthen site soil under freeze-thaw cycles

LI Xin-ming1, 2, ZHANG Hao-yang1, 2, WU Di1, 2, GUO Yan-rui1, 2, REN Ke-bin3, TAN Yun-zhi4   

  1. 1. School of Civil Engineering and Architecture, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China; 2. Research Center of Environmental Geotechnical Engineering and Underground Engineering Disaster Control Engineering of Henan Province, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China; 3. Henan Provincial Architectural Heritage Protection and Research Institute, Zhengzhou, Henan 450007, China; 4. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area of Ministry of Education, China Three Gorges University, Yichang, Hubei 443002, China
  • Received:2022-08-01 Accepted:2022-10-23 Online:2023-06-14 Published:2023-06-14
  • Supported by:
    This work was supported by the Henan Provincial College Young Backbone Teacher Project (2019GGJS142), the Basic Research Project of Henan Provincial Key Scientific Research Project (20ZX009), the National Natural Science Foundation of China (51509274) and the Scientific and Technological Project of Henan Province (202102310584, 222102320060)

摘要: 中原地区处于季冻区,周期性冻结与融化对遗址土体结构有显著影响。为探究石灰偏高岭土(L-MK)在抗冻融循环方面替代天然水硬性石灰(NHL)用于土遗址修复工作的可行性,以石灰、偏高岭土和遗址土为主要原料,对经历不同冻融循环次数的L-MK改良土试样分别进行质量损失测试、无侧限抗压强度试验和劈裂抗拉强度试验,系统研究其强度特性的冻融循环效应;并取部分试样进行X射线衍射(XRD)、热重(TG)、电镜扫描(SEM)等微观试验,揭示L-MK改良土强度劣化规律的内在机制。结果表明:试验配合比下,L-MK改良土的抗冻性能优于NHL改良土,偏高岭土掺量的增加有助于提高L-MK改良土强度;随着冻融循环次数的增加,L-MK改良土应力−应变曲线的应变软化特征呈减弱趋势,无侧限抗压强度和劈裂抗拉强度单调衰减,但经历30次冻融循环后L-MK改良土无侧限抗压强度和劈裂抗拉强度分别高于NHL改良土3.79倍和1.16倍以上。这与L-MK及NHL 改良土生成的水化产物(CSH和C4AH13等)受冻融循环的影响规律基本一致。

关键词: 土遗址, 冻融循环, 石灰偏高岭土, 水硬性石灰, 微观结构

Abstract: The Central Plains are located in an area that experiences seasonal freeze-thaw cycles, which can have significant effects on the soil structure of soil relics. To determine if lime-metakaolin (L-MK) is a feasible alternative to natural hydraulic lime (NHL) for earth site restoration work, tests were conducted using lime, metakaolin and silty sand from the site as main raw materials. Mass loss, unconfined compressive strength and splitting tensile strength tests were carried out on L-MK improved silty sand soil undergoing different numbers of freeze-thaw cycles to study its strength characteristics in depth. X-ray diffraction (XRD) thermogravimetry (TG), and scanning electron microscope (SEM) microscopic tests were also performed on some samples to reveal the internal mechanism of strength deterioration law of L-MK improved soil. Results indicate that L-MK improved soil has better freeze-thaw cycle resistance than NHL improved soil under the experimental mix ratio. Increasing the content of metakaolin improves the strength of L-MK improved soil. As the number of freeze-thaw cycles increases, the strain softening characteristics of L-MK improved soil show a weakening trend, and unconfined compressive strength and tensile strength decrease monotonically. After 30 freeze-thaw cycles, the unconfined compressive strength and splitting tensile strength of L-MK improved soil are about 3.79 and 1.16 times higher than that of NHL improved soil, respectively. The variation of strength is consistent with hydration products such as CSH and C4AH13 generated by hydration reaction under the influence of freeze-thaw cycle for L-MK and NHL improved soil.

Key words: earthen sites, freeze-thaw cycle, lime-metakaolin, hydraulic lime, microstructure

中图分类号: 

  • TU449
[1] 郭青林, 李平, 张博, 裴强强, 王彦武, 水碧纹, 孙满利, . 微纳米Ca(OH)2加固遗址土室内试验研究[J]. 岩土力学, 2023, 44(8): 2221-2228.
[2] 张俊然, 宋陈雨, 姜彤, 王俪锦, 赵金玓, 熊潭清. 非饱和黄土高吸力下的水力力学特性及微观结构分析[J]. 岩土力学, 2023, 44(8): 2229-2237.
[3] 张建新, 马昌虎, 郎瑞卿, 孙立强, 杨爱武, 李迪, . 带围压冻融循环下滨海重塑软土力学特性试验研究[J]. 岩土力学, 2023, 44(7): 1863-1874.
[4] 张凌凯, 崔子晏, . 干湿−冻融循环条件下膨胀土的压缩及渗透特性变化规律[J]. 岩土力学, 2023, 44(3): 728-740.
[5] 文少杰, 郑文杰, 胡文乐, . 铅污染对黄土宏观持水性能和微观结构演化的影响研究[J]. 岩土力学, 2023, 44(2): 451-460.
[6] 魏丽, 柴寿喜, 刘著, 王沛, 李芳, . 以扫描电镜与核磁共振指标评价冻融纤维 加筋土的抗压强度[J]. 岩土力学, 2022, 43(S2): 163-170.
[7] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
[8] 雷华阳, 张文振, 霍海峰, 冯双喜, 李其昂, 刘汉磊, . 水汽补给下砂土冻胀量与微观结构参数关联研究[J]. 岩土力学, 2022, 43(9): 2337-2346.
[9] 张津津, 李博, 余闯, 张茂雨, . 矿渣−粉煤灰地聚合物固化砂土力学特性研究[J]. 岩土力学, 2022, 43(9): 2421-2430.
[10] 屈永龙, 杨更社, 奚家米, 何晖, 丁潇, 张猛, . 低温−加载作用下白垩系砂岩的变形 破坏特性试验研究[J]. 岩土力学, 2022, 43(9): 2431-2442.
[11] 刘成禹, 郑道哲, 张向向, 陈成海, 曹洋兵, . 冻融温变速率对岩石受载特性的影响规律[J]. 岩土力学, 2022, 43(8): 2071-2082.
[12] 刘观仕, 赵守道, 牟智, 莫燕坤, 赵青松, . 结构性对膨胀土收缩特性影响的试验研究[J]. 岩土力学, 2022, 43(7): 1772-1780.
[13] 钟文, 朱文韬, 曾鹏, 黄震, 王晓军, 郭钟群, 胡凯建, . 浸矿开采对离子型稀土基岩力学特性的影响研究[J]. 岩土力学, 2022, 43(6): 1481-1492.
[14] 张强, 王军保, 宋战平, 冯世进, 张玉伟, 曾涛, . 循环荷载作用下盐岩微观结构变化及经验疲劳模型[J]. 岩土力学, 2022, 43(4): 995-1008.
[15] 李敏, 于禾苗, 杜红普, 曹保宇, 柴寿喜, . 冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响[J]. 岩土力学, 2022, 43(2): 489-498.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .