岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 50-62.doi: 10.16285/j.rsm.2022.1352

• 基础理论与实验研究 • 上一篇    下一篇

预应力锚索桩板墙加固隧道洞口边坡的动力响应特性研究

冯海洲1, 2,蒋关鲁1, 2,何梓雷1, 2,郭玉丰1, 2,胡金山3,李杰4,袁胜洋1, 2   

  1. 1. 西南交通大学 高速铁路线路工程教育部重点实验室,四川 成都 610106;2. 西南交通大学 土木工程学院,四川 成都 610031; 3. 中铁第一勘察设计研究院有限公司,陕西 西安 710043;4. 中铁十八局集团有限公司,天津 300222
  • 收稿日期:2022-09-02 接受日期:2022-11-27 出版日期:2023-11-16 发布日期:2023-11-16
  • 通讯作者: 蒋关鲁,男,1962年生,博士,教授,博士生导师,主要从事道路与铁道工程方面的研究工作。E-mail: wgljiang@swjtu.edu.cn E-mail:haizhou.feng@my.swjtu.edu.cn
  • 作者简介:冯海洲,男,1995年生,博士研究生,主要从事道路与铁道工程、岩土工程等方面的研究工作。
  • 基金资助:
    国家自然科学基金资助项目(No. 51878577);基于性能设计的高速铁路新型加筋土挡墙服役行为演化与控制研究(No. 2022YFE0104600)

Dynamic response characteristics of tunnel portal slope reinforced by prestressed anchor sheet-pile wall

FENG Hai-zhou1, 2, JIANG Guan-lu1, 2, HE Zi-lei1, 2, GUO Yu-feng1, 2, HU Jin-shan3, LI Jie4, YUAN Sheng-yang1, 2   

  1. 1. Key Laboratory of High-Speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610106, China; 2. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031; 3. China Railway First Survey and Design Institute Group Co., Ltd, Xi’an, Shaanxi 710043, China; 4. China Railway 18TH Bureau Group Corporation Limited, Tianjin, 30022, China
  • Received:2022-09-02 Accepted:2022-11-27 Online:2023-11-16 Published:2023-11-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (N0. 51878577) and Study on Service Behavior Evolution and Control of New Reinforced Soil Retaining Walls for Highspeed Railway Based on Performance Design (No. 2022YFE0104600).

摘要: 降雨、地震作用下,隧道洞口边坡易产生严重破坏,有必要研究隧道洞口边坡及支挡结构的动力响应特性。以中国西南某隧道洞口边坡为例,通过振动台模型试验,分析降雨、地震作用下预应力锚索桩板墙加固隧道洞口边坡的动力响应与破坏模式。研究结果表明:(1)隧道洞口边坡破坏过程为坡顶张拉裂缝―坡脚剪切溃裂―边坡整体滑移破坏。由于雨水入渗,坡表土体在地震作用下易产生局部浅层破坏。边坡破坏模式为张拉-剪切型。(2)随峰值加速度增加,桩身PGA放大系数显著增大,应重视该类支护结构在地震作用下的惯性放大效应。(3)桩后峰值土压力随峰值加速度增加而增大,由“S型”分布逐渐转变为倒三角形分布。峰值加速度大于0.4g时,锚索轴力逐渐增加,充分发挥张拉作用。(4)桩土压力与加速度傅里叶谱幅值集中于低频段,地震波沿高程传播存在“高频滤波效应”。(5)桩身位移谱幅值随峰值加速度增加而逐渐增大,沿桩身向上呈增加趋势;位移谱主频分布于1~4 Hz,卓越频率为2.5 Hz,与地震荷载的主频较接近。(6)桩体加速度间的关联性较好,桩体加速度、动土压力、桩体应变、锚索轴力相关性随输入峰值加速度增加而逐渐降低。

关键词: 预应力锚索桩板墙, 隧道洞口边坡, 降雨、地震, 动力响应, 振动台试验

Abstract: The tunnel slope is prone to be damaged under the action of earthquakes and rainfall. It is necessary to study the dynamic response characteristics of the reinforcement structure of the tunnel portal slope. A tunnel portal slope in southwest China is experimentally studied as an example. The dynamic response and failure mode of the tunnel portal slope reinforced by prestressed anchor sheet-pile wall under earthquakes and rainfall are analyzed through shaking table test. The main conclusions include: (1) The failure process of the slope can be summarized as: tension cracks at the slope crest-shear cracks shear cracking, the foot of the slope, and overall sliding failure of the slope. Under the seismic action, the local damage occurs easily near the slope surface due to the infiltration of rainfall. The failure mode is tension-shear. (2) The peak acceleration amplification factors along the pile shaft increase significantly with the increase of peak acceleration, thus the inertial amplification effect of the structure should be considered properly. (3) The peak earth pressures behind the pile increase as the input peak acceleration becomes larger and the earth pressure changes from the S-shaped distribution to the inverted triangle distribution. When the peak acceleration is greater than 0.4 g, the axial force of anchor cable increases gradually and the tension effect is fully exerted. (4) The amplitude of Fourier spectrum of soil pressure and acceleration of pile are concentrated in the low frequency band. There is a high-frequency filtering effect of seismic wave propagation along the elevation. (5) The displacement spectrum amplitude of the pile increases as the peak acceleration becomes greater and increases larger along the pile height. The main frequency of the displacement spectrum is 1–4 Hz and the dominant frequency is 2.5 Hz, which is close to the dominant frequency of the seismic load. (6) The correlation between pile accelerations is well related and the correlations of pile acceleration, dynamic soil pressure, strain and axial force of anchor cable decrease with the increase of peak acceleration.

Key words: prestressed anchor sheet pile, tunnel portal slope, earthquake and rainfall, dynamic response, shaking table test

中图分类号: 

  • TU 473
[1] 王通, 刘先峰, 袁胜洋, 蒋关鲁, 胡金山, 邵珠杰, 田士军, . 顺倾及反倾层状碎裂结构斜坡地震反应的大型振动台试验研究[J]. 岩土力学, 2024, 45(2): 489-501.
[2] 王瑞, 胡志平. 铁路路基动力响应的2.5D有限元方法研究现状及展望[J]. 岩土力学, 2024, 45(1): 284-301.
[3] 李小信, 何超, 周顺华, 李晖, . 具有不规则界面的层状地基三维动力响应的薄层法[J]. 岩土力学, 2023, 44(S1): 655-668.
[4] 王志颖, 郭明珠, 曾金艳, 王晨, 刘晃. 地震作用下含软弱夹层顺层岩质斜坡 动力响应的试验研究[J]. 岩土力学, 2023, 44(9): 2566-2578.
[5] 王晓磊, 刘理腾, 刘润, 刘历波, 董林, 任海. 地震历史对各深度土体抗液化性影响的振动台试验研究[J]. 岩土力学, 2023, 44(9): 2657-2666.
[6] 贾科敏, 许成顺, 杜修力, 张小玲, 宋佳, 苏卓林, . 可液化倾斜场地的侧向扩展机制分析[J]. 岩土力学, 2023, 44(6): 1837-1848.
[7] 张硕成, 陈文化. 考虑不均匀冻胀土体-衬砌隧道在寒区的振动响应[J]. 岩土力学, 2023, 44(5): 1467-1476.
[8] 王丽艳, 吉文炜, 陶云翔, 唐跃, 王炳辉, 蔡晓光, 张雷, . 格栅条带式加筋废旧轮胎胎面挡土墙 抗震性能试验研究[J]. 岩土力学, 2023, 44(4): 931-940.
[9] 张聪, 冯忠居, 王富春, 孔元元, 王溪清, 马晓谦, . 强震区软弱土层差异厚度下单桩动力响应振动台试验[J]. 岩土力学, 2023, 44(4): 1100-1110.
[10] 刘新荣, 郭雪岩, 许彬, 周小涵, 曾夕, 谢应坤, 王䶮, . 含消落带劣化岩体的危岩边坡动力累积损伤机制研究[J]. 岩土力学, 2023, 44(3): 637-648.
[11] 闫志晓, 李雨润, 王东升, 王永志, . 覆水砂土场地中桥梁群桩基础地震响应离心试验研究[J]. 岩土力学, 2023, 44(3): 861-872.
[12] 许明, 余小越, 赵元平, 胡家驹, 张潇婷, . 顺倾层状碎裂结构岩质边坡地震动力响应及破坏模式分析[J]. 岩土力学, 2023, 44(2): 362-372.
[13] 信春雷, 杨飞, 冯文凯, 李文惠, 廖军, . 多期地震作用的台阶式顺层岩质边坡震裂破坏机制[J]. 岩土力学, 2023, 44(12): 3481-3494.
[14] 胡垚, 雷华阳, 雷峥, 刘英男, . 三向地震作用下叠交隧道地震响应振动台试验研究[J]. 岩土力学, 2022, 43(S2): 104-116.
[15] 刘斯宏, 李博文, 鲁洋, 沈超敏, 方斌昕, 杭丹, . 土工袋垫层抗液化性能振动台试验研究[J]. 岩土力学, 2022, 43(S2): 183-192.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王川婴,胡培良,孙卫春. 基于钻孔摄像技术的岩体完整性评价方法[J]. , 2010, 31(4): 1326 -1330 .
[2] 李华明,蒋关鲁,刘先峰. CFG桩加固饱和粉土地基的动力特性试验研究[J]. , 2010, 31(5): 1550 -1554 .
[3] 王云岗,熊 凯,凌道盛. 基于平动加转动运动场的边坡稳定上限分析[J]. , 2010, 31(8): 2619 -2624 .
[4] 龙 照,赵明华,张恩祥,刘峻龙. 锚杆临界锚固长度简化计算方法[J]. , 2010, 31(9): 2991 -2994 .
[5] 史旦达,周 健,贾敏才,杨永香. 考虑蠕变性状的港区软土地基参数反演和长期沉降预测[J]. , 2009, 30(3): 746 -750 .
[6] 丁洲祥,仇玉良,李 涛. 双面排水非线性固结超静孔压的非对称性解析[J]. , 2012, 33(6): 1829 -1838 .
[7] 田堪良 ,张慧莉 ,马 俊 . 基于强度条件的黄土结构性静力试验研究[J]. , 2012, 33(7): 1993 -1999 .
[8] 费 康 ,王军军 ,陈 毅 . 桩承式路堤土拱效应简化分析方法[J]. , 2012, 33(8): 2408 -2414 .
[9] 傅 华,韩华强,凌 华. 堆石料级配缩尺方法对其室内试验结果的影响[J]. , 2012, 33(9): 2645 -2649 .
[10] 王学滨,伍小林,潘一山,张春野. 基于颗粒-界面-基体模型圆形巷道围岩中应力与应变演变分析[J]. , 2012, 33(S2): 314 -320 .