岩土力学 ›› 2024, Vol. 45 ›› Issue (1): 141-152.doi: 10.16285/j.rsm.2022.1752

• 基础理论与实验研究 • 上一篇    下一篇

高摩阻超静定土工格栅在粗粒土夹层中的剪胀作用研究

崔新壮1, 2,姜鹏1,王艺霖3,金青1,陈璐4   

  1. 1. 山东大学 土建与水利学院,山东 济南 250061;2. 重庆大学 土木工程学院,重庆 400045; 3. 香港科技大学 土木与环境工程系,香港;4. 滨州学院 建筑工程学院,山东 滨州 256603
  • 收稿日期:2022-11-08 接受日期:2022-12-30 出版日期:2024-01-10 发布日期:2024-01-10
  • 通讯作者: 王艺霖,男,1990年生,博士,博士后,主要从事路基与交通岩土方面的研究工作。E-mail: eason_wyl@163.com E-mail:cuixz@sdu.edu.cn
  • 作者简介:崔新壮,男,1974年生,博士,博士后,教授,博士生导师,主要从事路基与交通岩土方面的研究工作。
  • 基金资助:
    国家重点研发计划(No.2022YFB2601900);国家自然科学基金(No.52027813,No.52178429,No.U22A20235);山东省自然科学基金(No.ZR2020ME242)。

On the role of dilatancy induced by high resistance hyperstatic geogrids in coarse-grained soil layer

CUI Xin-zhuan1,2, JIANG Peng1, WANG Yi-lin3, JIN Qing1, CHEN Lu4   

  1. 1. School of Civil Engineering, Shandong University, Jinan, Shandong 250061, China; 2. School of Civil Engineering, Chongqing University, Chongqing 400045, China; 3. Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Hong Kong, China; 4. School of Civil Engineering, Binzhou University, Binzhou, Shandong 256603, China
  • Received:2022-11-08 Accepted:2022-12-30 Online:2024-01-10 Published:2024-01-10
  • Supported by:
    This work was supported by the National Key R&D Program of China (2022YFB2601900), the National Science Foundations of China (52027813, 52178429, U22A20235) and the Natural Science Foundations of Shandong Province (ZR2020ME242).

摘要: 在加筋土工程中,采用异型格栅和设置粗粒土夹层可以有效增强筋土相互作用。然而粗粒土夹层厚度的确定方法仍有待进一步研究。基于一种带有凸起节点结构的高摩阻超静定土工格栅(high resistance hyperstatic geogrids,简称HRHG)与砾石的直剪试验结果,建立了剪切硬化筋土界面的剪胀本构模型,并进一步研究了筋土剪胀应力在土体内引起附加应力的分布规律。通过开展不同法向压力(30、50、80 kPa)下的直剪试验,研究了不同粗粒土夹层厚度(60、100、140、180 mm)对筋土相互作用的影响,并与筋土界面剪胀应力的分布规律进行了对比分析。结果表明,筋土界面剪胀本构模型可以有效计算剪缩位移和剪胀位移,且最终剪胀位移随法向压力增加而减小。由界面剪胀应力引起的粗粒土中附加应力随着与筋土界面距离的增加而降低,但是剪胀范围逐步增大。粗粒土夹层厚度的增加可以有效提高界面剪切强度,但存在最优夹层厚度使界面剪切强度的增幅迅速降低。最优夹层厚度随着法向压力的增加而减小。通过对比分析最优夹层厚度与剪胀应力比之间的关系,提出了基于筋土界面剪胀本构模型的确定最优夹层厚度的半经验公式,可为HRHG在工程中的设计或应用提供参考。

关键词: 超静定土工格栅, 筋土相互作用, 直剪试验, 剪胀应力, 粗粒土夹层

Abstract: In geosynthetic reinforced soil engineering, the interaction between reinforcement and soil can be effectively enhanced by the use of geosynthetics with additional structures and the setting of coarse-grained soil layers. However, the determination method of the thickness of coarse-grained soil layer is still unclear. In this paper, based on the results of direct shear tests on the high resistance hyperstatic geogrids (HRHG) designed with convex nodes and gravel, a constitutive model of dilatancy at the geogrid-gravel interface under shear hardening condition is established, and the distribution of the additional stress induced by dilatancy in reinforced soil is further investigated. By conducting direct shear tests under different normal pressures (30, 50, 80 kPa). The effects of different coarse-grained soil layer thicknesses (60, 100, 140, 180 mm) on the interaction between reinforcement and soil are evaluated, and the dilatancy distribution at the interface between reinforcement and soil is also compared and analyzed. The results show that the established constitutive model for geogrid-gravel interfacial dilatancy agreed well with direct shear test results, suggesting that it can effectively calculate the shear shrinkage and dilatancy, and the final dilatancy decreases with the increase of normal pressure. The additional stress in coarse-grained soil layer induced by interfacial dilatancy decreases with increasing distance from the geogrid-gravel interfaces, but the scope of dilatancy increases gradually. The increase of the thickness of coarse-grained soil layer can effectively improve the interfacial shear strength, but there exists an optimal layer thickness, which rapidly reduces the increase of interfacial shear strength. The optimal layer thickness decreases with the increment of normal pressare. Through the comparative analysis of the optimal layer thickness and dilatancy ratio, a semi-empirical formula for determining the optimal layer thickness based on the modified dilatancy constitutive model is put forward, which can provide a reference for the design and application of HRHG in practical engineering.

Key words: hyperstatic geogrid, geosynthetic-soil interaction, direct shear test, dilatancy, coarse-grained soil layer

中图分类号: 

  • TU411
[1] 孟秋杰, 宋宜祥, 黄达, 马文著, 钟助, 岑夺丰, . 正融冰川碎屑冰冻体剪切强度劣化机制研究[J]. 岩土力学, 2024, 45(1): 197-212.
[2] 刘飞禹, 张诗珣, 熊勃, . 粗糙度对不同粒径砂-混凝土界面剪切特性影响[J]. 岩土力学, 2023, 44(S1): 419-426.
[3] 齐添, 孔剑捷, 刘飞禹. 循环剪切对格栅−土石混合体界面特性的影响[J]. 岩土力学, 2023, 44(9): 2593-2602.
[4] 范雷, 余美万, 邬爱清, 向前. 层间错动带水力耦合抗剪强度特性演化规律研究[J]. 岩土力学, 2023, 44(7): 1959-1970.
[5] 郑爽, 雍睿, 杜时贵, 何智海, 钟祯, 章莹莹, 眭素刚, . 基于纳米划痕试验的砂岩结构面宏−微观摩擦系数关系研究[J]. 岩土力学, 2023, 44(4): 1022-1034.
[6] 刘飞禹, 李昊泽, 符军, 孙宏磊, . 橡胶砂级配对混合土体剪切特性影响研究[J]. 岩土力学, 2023, 44(3): 663-672.
[7] 高要辉, 张春生, 苏方声, 邱士利, . 深部硬岩剪切边界下应力诱发片帮的机制研究[J]. 岩土力学, 2022, 43(4): 1103-1111.
[8] 潘文韬, 杨文波, 吴枋胤, 何川, 赵亮亮, 姚人杰, 傅舰锋, . 基于单三轴试验与直剪试验的层状软岩模拟[J]. 岩土力学, 2022, 43(12): 3437-3452.
[9] 冯大阔, 张建民, . 应力幅值比对土-结构接触面非共轴特性影响研究[J]. 岩土力学, 2022, 43(11): 3047-3058.
[10] 周远, 韦昌富, 周家作, 陈盼, 魏厚振, . 气体水合物喷射合成与直剪试验系统的研制与应用[J]. 岩土力学, 2021, 42(8): 2311-2320.
[11] 范祥, 邓志颖, 崔志猛, 何忠明, 林杭, . 一种新的软−硬节理峰值剪切强度模型[J]. 岩土力学, 2021, 42(7): 1861-1870.
[12] 刘飞禹, 江淮, 王军, . 砾石−格栅界面循环剪切软化特性试验研究[J]. 岩土力学, 2021, 42(6): 1485-1492.
[13] 涂义亮, 刘新荣, 任青阳, 柴贺军, 王军保, 余佳玉. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41(12): 3919-3928.
[14] 唐丽云, 王鑫, 邱培勇, 金龙, . 冻土区土石混合体冻融交界面剪切性能研究[J]. 岩土力学, 2020, 41(10): 3225-3235.
[15] 柴 维, 龙志林, 旷杜敏, 陈佳敏, 闫超萍. 直剪剪切速率对钙质砂强度及变形特征的影响[J]. 岩土力学, 2019, 40(S1): 359-366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈中学,汪 稔,胡明鉴,魏厚振,王新志. 云南东川蒋家沟泥石流形成内因初探[J]. , 2009, 30(10): 3053 -3056 .
[2] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[3] 朱珍德,李道伟,蒋志坚,刘金辉,杨永杰. 温度循环作用下深埋隧洞围岩细观结构的定量描述[J]. , 2009, 30(11): 3237 -3241 .
[4] 孔位学,芮勇勤,董宝弟. 岩土材料在非关联流动法则下剪胀角选取探讨[J]. , 2009, 30(11): 3278 -3282 .
[5] 张文杰,陈云敏,邱战洪. 垃圾土渗透性和持水性的试验研究[J]. , 2009, 30(11): 3313 -3317 .
[6] 高 玮. 基于蚁群聚类算法的岩石边坡稳定性分析[J]. , 2009, 30(11): 3476 -3480 .
[7] 余 俊,尚守平,李 忠,任 慧. 饱和土中桩水平振动引起土层复阻抗分析研究[J]. , 2009, 30(12): 3858 -3864 .
[8] 苗强强,张 磊,陈正汉,黄雪峰. 非饱和含黏砂土的广义土-水特征曲线试验研究[J]. , 2010, 31(1): 102 -106 .
[9] 苏 栋,李相崧. 地震作用下自由场中饱和砂土的应力-应变推导[J]. , 2010, 31(1): 277 -281 .
[10] 田 威,党发宁,丁卫华,梁昕宇,陈厚群. 适于CT试验的动态加载设备研制及其应用[J]. , 2010, 31(1): 309 -313 .