岩土力学 ›› 2024, Vol. 45 ›› Issue (1): 141-152.doi: 10.16285/j.rsm.2022.1752
崔新壮1, 2,姜鹏1,王艺霖3,金青1,陈璐4
CUI Xin-zhuan1,2, JIANG Peng1, WANG Yi-lin3, JIN Qing1, CHEN Lu4
摘要: 在加筋土工程中,采用异型格栅和设置粗粒土夹层可以有效增强筋土相互作用。然而粗粒土夹层厚度的确定方法仍有待进一步研究。基于一种带有凸起节点结构的高摩阻超静定土工格栅(high resistance hyperstatic geogrids,简称HRHG)与砾石的直剪试验结果,建立了剪切硬化筋土界面的剪胀本构模型,并进一步研究了筋土剪胀应力在土体内引起附加应力的分布规律。通过开展不同法向压力(30、50、80 kPa)下的直剪试验,研究了不同粗粒土夹层厚度(60、100、140、180 mm)对筋土相互作用的影响,并与筋土界面剪胀应力的分布规律进行了对比分析。结果表明,筋土界面剪胀本构模型可以有效计算剪缩位移和剪胀位移,且最终剪胀位移随法向压力增加而减小。由界面剪胀应力引起的粗粒土中附加应力随着与筋土界面距离的增加而降低,但是剪胀范围逐步增大。粗粒土夹层厚度的增加可以有效提高界面剪切强度,但存在最优夹层厚度使界面剪切强度的增幅迅速降低。最优夹层厚度随着法向压力的增加而减小。通过对比分析最优夹层厚度与剪胀应力比之间的关系,提出了基于筋土界面剪胀本构模型的确定最优夹层厚度的半经验公式,可为HRHG在工程中的设计或应用提供参考。
中图分类号:
[1] | 孟秋杰, 宋宜祥, 黄达, 马文著, 钟助, 岑夺丰, . 正融冰川碎屑冰冻体剪切强度劣化机制研究[J]. 岩土力学, 2024, 45(1): 197-212. |
[2] | 刘飞禹, 张诗珣, 熊勃, . 粗糙度对不同粒径砂-混凝土界面剪切特性影响[J]. 岩土力学, 2023, 44(S1): 419-426. |
[3] | 齐添, 孔剑捷, 刘飞禹. 循环剪切对格栅−土石混合体界面特性的影响[J]. 岩土力学, 2023, 44(9): 2593-2602. |
[4] | 范雷, 余美万, 邬爱清, 向前. 层间错动带水力耦合抗剪强度特性演化规律研究[J]. 岩土力学, 2023, 44(7): 1959-1970. |
[5] | 郑爽, 雍睿, 杜时贵, 何智海, 钟祯, 章莹莹, 眭素刚, . 基于纳米划痕试验的砂岩结构面宏−微观摩擦系数关系研究[J]. 岩土力学, 2023, 44(4): 1022-1034. |
[6] | 刘飞禹, 李昊泽, 符军, 孙宏磊, . 橡胶砂级配对混合土体剪切特性影响研究[J]. 岩土力学, 2023, 44(3): 663-672. |
[7] | 高要辉, 张春生, 苏方声, 邱士利, . 深部硬岩剪切边界下应力诱发片帮的机制研究[J]. 岩土力学, 2022, 43(4): 1103-1111. |
[8] | 潘文韬, 杨文波, 吴枋胤, 何川, 赵亮亮, 姚人杰, 傅舰锋, . 基于单三轴试验与直剪试验的层状软岩模拟[J]. 岩土力学, 2022, 43(12): 3437-3452. |
[9] | 冯大阔, 张建民, . 应力幅值比对土-结构接触面非共轴特性影响研究[J]. 岩土力学, 2022, 43(11): 3047-3058. |
[10] | 周远, 韦昌富, 周家作, 陈盼, 魏厚振, . 气体水合物喷射合成与直剪试验系统的研制与应用[J]. 岩土力学, 2021, 42(8): 2311-2320. |
[11] | 范祥, 邓志颖, 崔志猛, 何忠明, 林杭, . 一种新的软−硬节理峰值剪切强度模型[J]. 岩土力学, 2021, 42(7): 1861-1870. |
[12] | 刘飞禹, 江淮, 王军, . 砾石−格栅界面循环剪切软化特性试验研究[J]. 岩土力学, 2021, 42(6): 1485-1492. |
[13] | 涂义亮, 刘新荣, 任青阳, 柴贺军, 王军保, 余佳玉. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41(12): 3919-3928. |
[14] | 唐丽云, 王鑫, 邱培勇, 金龙, . 冻土区土石混合体冻融交界面剪切性能研究[J]. 岩土力学, 2020, 41(10): 3225-3235. |
[15] | 柴 维, 龙志林, 旷杜敏, 陈佳敏, 闫超萍. 直剪剪切速率对钙质砂强度及变形特征的影响[J]. 岩土力学, 2019, 40(S1): 359-366. |
|