岩土力学 ›› 2023, Vol. 44 ›› Issue (5): 1416-1424.doi: 10.16285/j.rsm.2022.1844

• 基础理论与实验研究 • 上一篇    下一篇

不同胶结剂人工结构性黄土的力学特性差异研究

李宏儒1, 2,梁恒楠3   

  1. 1. 西安理工大学 土木建筑工程学院,陕西 西安 710048; 2. 西安理工大学 陕西省黄土力学与工程重点试验室,陕西 西安 710048;3.南阳师范学院,河南 南阳 473061
  • 收稿日期:2022-11-25 接受日期:2023-02-21 出版日期:2023-05-09 发布日期:2023-04-30
  • 作者简介:李宏儒,男,1972年,博士,副教授,主要从事岩土力学方面的教学和黄土力学与工程研究
  • 基金资助:
    陕西省黄土力学与工程重点试验室项目(No. 13JS073);陕西省自然科学基础项目(No. 2017JM5059)

Study on the difference of mechanical properties of artificial structured loess with different binders

LI Hong-ru1, 2, LIANG Heng-nan3   

  1. 1. School of Civil and Architectural Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China; 2. Shaanxi Provincial Key Laboratory of Loess Mechanics and Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China; 3. Nanyang Normal University, Nanyang, Henan 473061, China
  • Received:2022-11-25 Accepted:2023-02-21 Online:2023-05-09 Published:2023-04-30
  • Supported by:
    This work was supported by the Key Laboratory Project of Loess Soil Mechanics and Engineering (13JS073) of Shaanxi Province and the Natural Science Foundation of Shaanxi Province (2017JM5059).

摘要: 黄土是一种具有显著结构性的土,由于原状黄土存在非均匀性、各向异性、原位取样扰动性以及试验重复变异性等因素,如何人工制备一种结构性黄土,能真实地反映原状黄土的力学特性,值得研究。针对已有向重塑黄土中添加水泥、石灰和新型岩土添加材料路液来制备结构性土的这些方法,研究了不同添加剂对人工结构性黄土的力学特性影响的差异性。研究结果表明:路液作为添加剂制备的结构性土随路液含量的增大,结构强度先增大后减小,不同于水泥和石灰随添加量增大、抗剪强度持续增大这一特点;在不同围压下,添加路液制备的结构性土,其应力-应变曲线演化规律较符合原状黄土的力学特性;3种添加剂制备的结构性土抗剪强度随含水率变化具有陡降区和平缓区的差别,在含水率小于塑限的陡降区,抗剪强度急剧降低,而在平缓区变化缓慢,趋向于重塑土;不同添加剂对人工结构性黄土摩擦角 φ 的影响较小,但对黏聚力 c 影响显著。研究成果有助于认识常用胶结剂对土力学性质改变的特性,也可为制备设定力学参数的人工结构性黄土的技术提供理论与技术指导。

关键词: 人造结构性土, 胶结剂, 结构强度, 应力-应变曲线, 抗剪强度

Abstract: Loess is a type of soil with metastable structure. Due to the inhomogeneity, anisotropy, disturbance of in situ sampling and repeated variability of tests of undisturbed loess, how to manually prepare a structured loess that can more accurately reflect the mechanical properties of undisturbed loess is worth studying. Based on the existing methods of preparing structured soil by adding cement, lime and new rock and soil materials Roadyes to remolded loess, this study investigates the influence of different binders on the mechanical properties of artificial structured loess. The research results show that the structural strength of the structured soil prepared with Roadyes as the binders increases first and then decreases with the increase in Roadyes content, which is different from the characteristics that the shear strength of cement and lime increases continuously with the increase in the addition amount. Under different confining pressures, the evolution of the stress–strain curve of the structured soil prepared with Roadyes is more consistent with the mechanical properties of the undisturbed loess. The variation of shear strength of structured soil prepared with three binders can be divided into steep drop stage and stable stage with the change of water content. At the steep drop stage where the water content is less than the plastic limit, the shear strength decreases sharply, but changes slowly at the stable stage, which resembles the remolded soil. Different binders have little influence on the friction angle φ  of artificial structured loess, but have significant influence on the cohesion c. The research results are helpful to understand the soil mechanical properties changed by common binders, and also provide theoretical and technical guidance for the preparation of artificial structured loess with preset mechanical parameters.

Key words: artificial structured soil, binder, structural strength, stress–strain curve, shear strength

中图分类号: 

  • TU 411
[1] 周恩全, 姚缘, 崔磊, 王龙. 非饱和橡胶粉土抗剪强度特性研究[J]. 岩土力学, 2023, 44(7): 1949-1958.
[2] 范雷, 余美万, 邬爱清, 向前. 层间错动带水力耦合抗剪强度特性演化规律研究[J]. 岩土力学, 2023, 44(7): 1959-1970.
[3] 张延杰, 何萌, 宋萌, 曹立, 赵海涛, 李梅. 富水砂卵石地层力学特性研究[J]. 岩土力学, 2023, 44(6): 1739-1747.
[4] 张鸿朋, 马芹永, 黄坤, 马冬冬, 姚兆明, 张发, . 冻结砂不同应力路径三轴试验强度和变形分析[J]. 岩土力学, 2023, 44(5): 1477-1486.
[5] 赵煜鑫, 李旭, 林森, 王逍萌, . 广吸力范围内一种改进的非饱和土抗剪强度模型[J]. 岩土力学, 2023, 44(4): 990-1000.
[6] 陈曦. 基于方向性粗糙度参数的节理峰值抗剪 强度理论模型[J]. 岩土力学, 2023, 44(4): 1075-1088.
[7] 肖涵, 董超强, 章荣军, 陆展, 郑俊杰. 生石灰对理化复合法处理淤泥浆效率的影响研究[J]. 岩土力学, 2022, 43(S2): 214-222.
[8] 刘宽, 叶万军, 高海军, 董琪, . 酸碱污染黄土抗剪强度演化规律及微观机制[J]. 岩土力学, 2022, 43(S1): 1-12.
[9] 汤华, 严松, 杨兴洪, 吴振君, . 差异含水率下全风化混合花岗岩抗剪强度 与微观结构试验研究[J]. 岩土力学, 2022, 43(S1): 55-66.
[10] 曾立峰, 邵龙潭, 郭晓霞, . 土中有效应力概念的起源与发展[J]. 岩土力学, 2022, 43(S1): 127-144.
[11] 李丽华, 方亚男, 肖衡林, 李文涛, 曹毓, 徐可, . 赤泥复合物固化/稳定化镉污染土特性研究[J]. 岩土力学, 2022, 43(S1): 193-202.
[12] 郑威威, 洪义, 王立忠, . 含气软黏土的不排水抗剪强度计算模型[J]. 岩土力学, 2022, 43(8): 2233-2240.
[13] 李敏, 于禾苗, 杜红普, 曹保宇, 柴寿喜, . 冻融循环对二灰和改性聚乙烯醇 固化盐渍土力学性能的影响[J]. 岩土力学, 2022, 43(2): 489-498.
[14] 杨洲, 程晓辉, 麻强, 刘伟, 谢庄子, . 高填方地基不排水稳定性分析强度指标研究[J]. 岩土力学, 2022, 43(1): 218-226.
[15] 夏鑫, 姜元俊, 苏立君, MEHTAB Alam, 李佳佳, . 基于界面黏结的含根土抗剪强度极限值估算模型[J]. 岩土力学, 2021, 42(8): 2173-2184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .