岩土力学 ›› 2023, Vol. 44 ›› Issue (9): 2619-2627.doi: 10.16285/j.rsm.2022.1868

• 基础理论与实验研究 • 上一篇    下一篇

基于冲击耗能指数定量评价岩石硬度试验研究

曹瑞琅1,王玉杰1,邢泊2,赵宇飞1,沈强1   

  1. 1. 中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室,北京 100048; 2. 中铁工程装备集团有限公司 特种装备事业部,河南 新乡 453000
  • 收稿日期:2022-11-30 接受日期:2023-03-05 出版日期:2023-09-11 发布日期:2023-09-02
  • 作者简介:曹瑞琅,男,1985年生,博士,正高级工程师,主要从事岩土力学与工程方面的科研工作。
  • 基金资助:
    国家自然科学基金(No.52079150)。

Experimental investigation on quantitative evaluation of rock hardness based on impact energy dissipation index

CAO Rui-lang1, WANG Yu-jie1, XING Bo2, ZHAO Yu-fei1, SHEN Qiang1   

  1. 1. China State key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; 2. Special Equipment Research Institute, China Railway Engineering Equipment Group Co., Ltd., Xinxiang, Henan 453000, China
  • Received:2022-11-30 Accepted:2023-03-05 Online:2023-09-11 Published:2023-09-02
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52079150).

摘要: 岩石硬度是反映岩层软硬、可钻性和爆破难易程度的重要指标,解译冲击钻进钻具响应信息可为原位、快速、定量评价岩石硬度提供新思路。采用高精度数字型位移、液压和转速传感器监测冲击钻机的关键传动部位,搭建了冲击钻机数字钻进过程监测系统。平行开展岩石硬度测定和冲击钻进正交试验,建立了各类岩石的钻进响应信息标准数据库,深入剖析推进压、冲击压、旋转速度与冲击耗能之间函数关系,并提出利用冲击耗能指数定量评价岩石硬度的方法。研究发现,推进压和冲击耗能呈负相关的线性关系;冲击压和钻进耗能拟合曲线为开口向上抛物线,各种岩石对应曲率半径不尽相同,但对称轴基本一致;钎杆转速对钻进耗能的影响可忽略。通过对单位体积钻进耗能进行无量纲化处理,滤除了冲击钻进机械参数的影响,定义了可用于表征岩石硬度的新指标:冲击耗能指数,其离散性小且与岩石硬度具有良好的相关性。利用数字传感技术获取和解译常规钻孔的钻进过程响应信息,可在不额外增加勘测或试验工作量情况下测定岩石硬度,为工程现场直接评价岩体参数提出了新途径。

关键词: 岩石硬度, 冲击钻机, 冲击耗能指数, 推进压, 冲击压, 钎杆转速

Abstract: Rock hardness is an important indicator reflecting the relative hardness, drillability, and blastability of rock formation. Accurate interpretation of the response of percussion drilling tools can provide new possibilities for in-situ, rapid, and quantitative evaluation of rock hardness. High-precision digital displacement, hydraulic pressure, and rotational speed sensors were used to monitor the key transmission parts of the percussion drill, and a digital monitoring system for the drilling process was then established. Rock hardness measurement and orthogonal tests of percussion drilling were parallelly carried out, and a standard database containing response data of the drill when drilling various types of rocks was established. Functional relationships between propelling pressure, percussion pressure, rotational speed, and impact energy dissipation were developed, and a novel method to quantitatively evaluate rock hardness based on impact energy dissipation index was proposed. The performed tests and analyses revealed that there is an inverse linear relationship between the propelling pressure and impact energy dissipation. The fitting curve of percussion pressure and drilling energy dissipation is an open upward parabola, and the curves for various rocks have the same symmetry axis but different curvature radii. The influence of rotational speed of drill rod on drilling energy dissipation is negligible. By dimensionless treatment of drilling energy dissipation per unit volume, the influence of mechanical parameters of percussion drilling is removed, and the impact energy dissipation index , which has low discreteness and a good correlation with rock hardness, was defined to characterize the rock hardness. The response data of the drilling process in conventional boreholes were obtained and interpreted by the digital sensing technology, and the obtained data were used to determine the rock hardness without additional survey or test, which puts forward a new way for direct evaluation of rock mass parameters on engineering sites.

Key words: rock hardness, percussion drill, impact energy dissipation index, propelling pressure, percussion pressure, rotational speed of drill rod

中图分类号: 

  • TU452
[1] 伍 杨,张先锋,熊 玮,潘 建,乔 良,郭 磊,. 岩石材料冲击压缩特性细观模拟方法研究[J]. , 2017, 38(6): 1805-1812.
[2] 陈忠清 ,徐 超 ,叶观宝 ,强海飞 ,陆 胜,. 冲击碾压模拟试验设备研制[J]. , 2015, 36(1): 279-285.
[3] 王生新 ,韩文峰 ,谌文武 ,梁庆国 . 冲击压实路基黄土的微观特征研究[J]. , 2006, 27(6): 939-944.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .