岩土力学 ›› 2023, Vol. 44 ›› Issue (S1): 300-308.doi: 10.16285/j.rsm.2022.1918

• 基础理论与实验研究 • 上一篇    下一篇

单轴加载过程中钢渣稳定土细观裂隙的动态演化特征

安然1, 2,陈欣3,张先伟2,王港2, 3,高浩东2   

  1. 1. 合肥工业大学 土木与水利工程学院,安徽 合肥 230099; 2. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉430071; 3. 武汉科技大学 城市建设学院,湖北 武汉 430081
  • 收稿日期:2022-12-07 接受日期:2023-01-30 出版日期:2023-11-16 发布日期:2023-11-17
  • 通讯作者: 张先伟,男,1982 年生,博士,研究员,主要从事特殊土土力学基础及应用方面的研究。E-mail: xwzhang@whrsm.ac.cn E-mail:anran@wust.edu.cn
  • 作者简介:安然,男,1992年生,博士,副教授,主要从事岩土体力学行为的多尺度研究。
  • 基金资助:
    国家自然科学基金(No.12102312,No.42177148);岩土力学与工程国家重点实验室开放基金项目(No.SKLGME021018)。

Dynamic evolution characteristics of microscopic cracks in steel slag- stabilized soil under uniaxial loading

AN Ran1, 2, CHEN Xin3, ZHANG Xian-wei2, WANG Gang2, 3, GAO Hao-dong 2   

  1. 1. College of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; 2. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 3. School of Urban Construction, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
  • Received:2022-12-07 Accepted:2023-01-30 Online:2023-11-16 Published:2023-11-17
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (12102312,42177148) and the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering (SKLGME021018).

摘要: 钢渣稳定土是一种新型路基填土,具有非均质、非连续的特点,传统的力学测试方法难以直接研究其细观结构的破坏机制。为了揭示钢渣稳定土的细观损伤特征,开展单轴压缩与X射线计算机断层(computed tomography,简称CT)实时扫描试验,结合图像处理和三维可视化技术,分析了4种应变水平下细观裂隙的动态演化特征。结果表明:在单轴压缩过程中,钢渣稳定土经历了初始压密、弹性变形、塑性屈服和残余变形4个阶段,并在试样中部形成局部剪切带;随着轴向应变的增加,二维裂隙率和裂隙分布的离散程度不断提高;三维重构模型动态地展现了细观裂隙的演化过程,研究发现试样的破坏伴随裂隙的萌发、快速扩展与基本稳定3个发展阶段;三维裂隙率、裂隙连通度与应变分别呈指数函数和线性函数关系;孔径分布结果表明荷载引起原生裂隙的扩张,并逐渐形成主裂隙面,裂隙的扩张和连通是试样发生强度软化和失稳破坏内在原因。单轴压缩−实时CT扫描试验的结果能够有效地揭示材料的损伤演化特征,为工业废渣稳定土结构破坏机制的研究提供了新视角和重要参考作用。

关键词: 钢渣稳定土, 裂隙, 单轴加载, CT扫描, 结构损伤

Abstract: As a new type of subgrade fill, steel slag-stabilized soil was characterized by high heterogeneity and discontinuity. It is difficult to directly study the microscopic characteristics of its failure mechanism through traditional mechanical testing and theoretical analysis methods. In order to reveal the damage mechanism of steel slag-stabilized soil, uniaxial compression tests were conducted combined with a real-time X-ray computed tomography (CT) test, and the dynamic evolution characteristics of microscopic cracks under four typical strain levels were analyzed based on image processing and three-dimensional visualization. The results show that the steel slag-stabilized soil experienced four stages, including initial compaction, elastic deformation, plastic yield and residual deformation. A localized shear band appeared in the middle of the specimen in uniaxial compression process. The two-dimensional porosity and dispersion degree of crack distribution continuously improved with the increasing axial strain. Three-dimensional reconstruction models vividly revealed that the cracks experienced three development stages, including initial germination, rapid expansion and stable state. Three-dimensional porosity and crack connectivity are exponential function and linear function respectively with axial strain. The pore size distributions show that the primary cracks gradually expand and penetrate through the entire specimen and contribute to a main fracture that leads to the structural damage. Thus, the expansion and connection of cracks are the internal reasons of strength softening and instability failure of specimen under uniaxial loading. The uniaxial compression-CT real-time scanning results can effectively reveal the damage evolution characteristics of materials. The research results provide a new perspective for understanding the failure mechanism of soils and have important reference for promoting the application of industrial waste slag in geotechnical engineering.

Key words: steel slag-stabilized soil, cracks, uniaxial loading, CT scanning, structural damage

中图分类号: 

  • TU 411
[1] 朱寅斌, 李长冬, 周佳庆, 项林语, 姜茜慧, 朱文宇, . 考虑基质渗透性的粗糙单裂隙非达西流动特性研究[J]. 岩土力学, 2024, 45(2): 601-611.
[2] 华涛, 申林方, 王志良, 李泽, 徐则民. 基于近场动力学的岩石水力压裂数值模拟及裂隙网络定量分析[J]. 岩土力学, 2024, 45(2): 612-622.
[3] 屈小磊, 张云开, 陈悠然, 陈悠扬, 戚承志, . 耦合渗流-变形的数值流形法裂隙岩质边坡稳定性分析[J]. 岩土力学, 2024, 45(1): 313-324.
[4] 张培森, 许大强, 李腾辉, 胡昕, 赵成业, 侯季群, 牛辉, . 裂隙砂岩注浆前后渗流特性及注浆后 力学特性试验研究[J]. 岩土力学, 2023, 44(S1): 12-26.
[5] 罗国立, 张科, 齐飞飞, 朱辉, 张凯, 刘享华, . 基于3D打印的裂隙岩体力学特性尺寸效应及各向异性初探[J]. 岩土力学, 2023, 44(S1): 107-116.
[6] 陈笑予, 姚强岭, 陈胜焱, 山长昊, 李英虎, 徐强, 于利强, 夏泽, 朱柳, 落弘业, . 基于深部含水煤样失稳特征的荷载梁式主控裂隙模型的试验研究[J]. 岩土力学, 2023, 44(S1): 375-386.
[7] 王凯, 付强, 徐超, 艾子博, 李丹, 王磊, 舒龙勇, . 原生煤岩组合体界面力学效应数值模拟研究[J]. 岩土力学, 2023, 44(S1): 623-633.
[8] 高志傲, 孔令伟, 王双娇, 刘炳恒, 芦剑锋, . 平面应变条件下不同裂隙方向原状膨胀土变形破坏性状与剪切带演化特征[J]. 岩土力学, 2023, 44(9): 2495-2508.
[9] 刘东东, 魏立新, 徐国元, 项彦勇, . 基于裂隙连续方法的三维裂隙岩体渗流传热数值模拟[J]. 岩土力学, 2023, 44(7): 2143-2150.
[10] 甘磊, 刘玉, 张宗亮, 沈振中, 马洪影, . 岩体裂隙粗糙度表征及其对裂隙渗流特性的影响[J]. 岩土力学, 2023, 44(6): 1585-1592.
[11] 马鹏杰, 芮瑞, 曹先振, 夏荣基, 王曦, 丁锐恒, 孙天健, . 微型桩加固长大缓倾裂隙土边坡模型试验[J]. 岩土力学, 2023, 44(6): 1695-1707.
[12] 张乐, 杨志兵, 李东奇, 陈益峰. 浆液在透明复制裂隙中驱替行为的可视化试验研究[J]. 岩土力学, 2023, 44(6): 1708-1718.
[13] 马国良, 陈曦, 范超男, 葛少成. 不同水力荷载路径下煤体微观渗流特征及宏观破坏研究[J]. 岩土力学, 2023, 44(6): 1779-1788.
[14] 冷先伦, 王川, 盛谦, 宋文军, 陈健, 张占荣, 陈菲, . 基于透明相似模型试验的主控裂隙边坡变形破坏演化机制研究[J]. 岩土力学, 2023, 44(5): 1283-1294.
[15] 王川, 冷先伦, 张占荣, 杨闯, 陈健, . 基于裂隙扩展的多级岩质边坡 开挖卸荷破坏路径分析[J]. 岩土力学, 2023, 44(4): 1190-1203.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘豆豆,陈卫忠,杨建平,谭贤君,周喜德. 脆性岩石卸围压强度特性试验研究[J]. , 2009, 30(9): 2588 -2594 .
[2] 孙 萍,彭建兵,殷跃平,吴树仁. 黄土拉伸试验及其破裂过程仿真分析[J]. , 2010, 31(2): 633 -637 .
[3] 王桂尧,李 斌,罗 军,付宏渊. 粉土基质吸力的新型量测装置与土-水特征研究[J]. , 2010, 31(11): 3678 -3682 .
[4] 王志萍,胡敏云,夏玲涛. 垃圾填土压缩特性的室内试验研究[J]. , 2009, 30(6): 1681 -1686 .
[5] 贾 强,应惠清,张 鑫. 锚杆静压桩技术在既有建筑物增设地下空间中的应用[J]. , 2009, 30(7): 2053 -2057 .
[6] 路军富,王明年,贾媛媛,喻 渝,谭忠盛. 高速铁路大断面黄土隧道二次衬砌施作时机研究[J]. , 2011, 32(3): 843 -848 .
[7] 方 焘 ,刘新荣 ,耿大新 ,罗 照 ,纪孝团 ,郑明新 . 大直径变径桩竖向承载特性模型试验研究(I)[J]. , 2012, 33(10): 2947 -2952 .
[8] 李 杰 ,李文培 ,施存程 ,王德荣 ,范鹏贤 . 基于剪切滑移的圆形洞室应力状态研究[J]. , 2012, 33(11): 3271 -3277 .
[9] 彭 翀 ,张宗亮 ,张丙印 ,袁友仁 . 高土石坝裂缝分析的变形倾度有限元法及其应用[J]. , 2013, 34(5): 1453 -1458 .
[10] 刘福臣,程兴奇. 堤坝土工膜防渗体稳定分析优化计算[J]. , 2008, 29(S1): 207 -210 .