岩土力学 ›› 2024, Vol. 45 ›› Issue (1): 97-107.doi: 10.16285/j.rsm.2023.0073

• 基础理论与实验研究 • 上一篇    下一篇

非挤土嵌岩预应力高强度混凝土管桩的桩端承载性能研究

凌造1, 2,唐孟雄1, 2,胡贺松3,刘春林3,李波1, 2,苏定立3   

  1. 1. 广州建筑股份有限公司,广东 广州 510030;2. 广州市建筑集团有限公司,广东 广州 510030; 3. 广州市建筑科学研究院集团有限公司,广东 广州 510440
  • 收稿日期:2023-01-19 接受日期:2023-03-05 出版日期:2024-01-10 发布日期:2024-01-10
  • 作者简介:凌造,男,1982年生,博士,高级工程师。主要从事岩土工程与施工技术方面的研究。
  • 基金资助:
    国家自然科学基金项目(No.51908225,No.52208336);中国博士后科学基金项目(No.2021M690784);广州建筑集团科技计划项目(No.2020-KJ002,No.2021-KJ040,No.2021-KJ041,No.2022-KJ002)

Bearing capacity of pile toe of non-displacement rock-socketed PHC pipe piles

LING Zao1, 2, TANG Meng-xiong1, 2, HU He-song3, LIU Chun-lin3, LI Bo1, 2, SU Ding-li3   

  1. 1. Guangzhou Construction Co., Ltd., Guangzhou, Guangdong 510030, China; 2. Guangzhou Municipal Construction Group Co., Ltd., Guangzhou, Guangdong 510030, China; 3. Guangzhou Institute of Building Science Group Co., Ltd., Guangzhou, Guangdong 510440, China
  • Received:2023-01-19 Accepted:2023-03-05 Online:2024-01-10 Published:2024-01-10
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (51908225, 52208336), the China Postdoctoral Science Foundation (2021M690784) and the Science and Technology Plan of Guangzhou Municipal Construction Group (2020-KJ002, 2021-KJ040, 2021-KJ041, 2022-KJ002).

摘要: 施工装备和工艺的不断创新使得非挤土嵌岩预应力高强度混凝土(prestressed high-strength concrete,简称PHC)管桩逐渐得到推广和应用。为揭示嵌入中微风化岩PHC管桩的桩端承载机制,以随钻跟管工法桩为背景,基于泥质粉砂岩地区5组桩径为500 mm的PHC管桩桩端现场静载破坏性试验,分析了不同条件下嵌岩PHC管桩的桩端承载性能及宏观破坏模式,并提出桩端承载力计算方法。试验表明:对于采用敞口桩靴的PHC管桩,未封底时,敞口桩靴削弱了PHC管桩桩端承载性能,呈现刺入岩基的破坏,极限荷载下桩端沉降为11~15 mm;混凝土封底后,显著提高了桩端承载性能,极限承载力较非封底时提升340%,封底混凝土和桩靴的桩端阻力分担比分别为78%和22%,桩端呈整体剪切破坏。基于Hoek-Brown强度准则,提出了嵌岩PHC管桩桩端承力简化计算方法,计算精度得到了试验验证,可供非挤土嵌岩PHC管桩的设计与施工参考。

关键词: 预应力高强度混凝土管桩(PHC管桩), 嵌岩桩, 桩端, 静载试验, 承载性能

Abstract: With the continuous innovation of construction equipment and technology, non-displacement rock-socketed prestressed high-strength concrete (PHC) pipe pile has been gradually popularized and applied. To reveal the bearing mechanism of pile toe of rock-socketed PHC pipe pile, five groups of static load destructive tests of pile toe of PHC pipe pile with pile diameter of 500 mm in argillaceous siltstone area were carried out under the background of the drilling with prestressed concrete pipe pile. The bearing capacity and macroscopic failure mode of the pile toe of rock-socketed PHC pipe piles under different conditions were analyzed, and the calculation method of the pile toe bearing capacity was proposed. The test results show that when PHC pipe pile with open pile shoe is used and the pile end is not sealed, the open pile shoe weakens the bearing capacity of pile toe of PHC pipe pile. The pile shoe pierces into the bedrock, and the settlement of the pile toe is 11−15 mm under the ultimate load. After pouring concrete to seal the bottom, the bearing capacity of pile toe is significantly improved. The ultimate bearing capacity is 340% higher than that without bottom sealing, and the pile toe resistance share ratios of bottom sealing concrete and pile shoe are 78% and 22%, respectively. The pile toe is subjected to overall shear failure. Finally, based on the Hoek-Brown strength criterion, a simplified calculation method for the bearing capacity of pile toe of rock-socketed PHC pipe piles is put forward. The calculation accuracy of this method has been verified by the tests, and the calculation method can be used as a reference for the design and construction of non-displacement rock-socketed PHC pipe piles.

Key words: prestressed high-strength concrete (PHC) pipe pile, rock-socketed pile, pile toe, static load test, bearing capacity

中图分类号: 

  • TU473
[1] 银吉超, 白晓宇, 张亚妹, 闫楠, 王永洪, 张明义, . 一种模拟原状泥岩动力打桩与静载试验 装置的研制及应用[J]. 岩土力学, 2023, 44(S1): 698-710.
[2] 王卫东, 王萌, 吴江斌, . 静钻根植桩扩底桩端极限承载性能的试验研究[J]. 岩土力学, 2023, 44(11): 3091-3098.
[3] 王静, 肖涛, 朱鸿鹄, 梅国雄, 刘拯源, 魏广庆, . 透水管桩现场试验光纤监测与承载性能研究[J]. 岩土力学, 2021, 42(7): 1961-1970.
[4] 侯振坤, 唐孟雄, 胡贺松, 黎剑华, 张树文, 徐晓斌, 刘春林, . 随钻跟管桩竖向承载性能原位试验 与室内物理模拟试验对比研究[J]. 岩土力学, 2021, 42(2): 419-429.
[5] 任连伟, 任军洋, 孔纲强, 刘汉龙, . 冷热循环下PHC能量桩热力响应 和承载性能现场试验[J]. 岩土力学, 2021, 42(2): 529-536.
[6] 刘春林, 唐孟雄, 胡贺松, 岳云鹏, 侯振坤, 陈航, . 考虑桩底沉渣的随钻跟管桩竖向承载 特性模型试验研究[J]. 岩土力学, 2021, 42(1): 177-185.
[7] 刘海峰, 朱长歧, 汪稔, 王新志, 崔翔, 王天民, . 礁灰岩-混凝土界面剪切特性试验研究[J]. 岩土力学, 2020, 41(5): 1540-1548.
[8] 朱建民, 殷开成, 龚维明, 谢礼飞, . 中美欧自平衡静载试验标准若干问题探讨[J]. 岩土力学, 2020, 41(10): 3491-3499.
[9] 秦伟, 戴国亮, 马李志, 裴铭海, 王磊, 朱光耀, 高博, . 珊瑚礁地层中PHC桩原位静载试验研究[J]. 岩土力学, 2019, 40(S1): 381-389.
[10] 吴爽爽, 胡新丽, 章涵, 周昌, 龚辉, . 嵌岩桩负摩阻力现场试验与计算方法研究[J]. 岩土力学, 2019, 40(9): 3610-3617.
[11] 袁维, 刘尚各, 聂庆科, 王伟, . 基于冲切破坏模式的嵌岩桩桩端溶洞顶板 临界厚度确定方法研究[J]. 岩土力学, 2019, 40(7): 2789-2798.
[12] 王家全, 徐良杰, 黄世斌, 刘政权. 动载下土工格栅加筋桥台挡墙承载性能分析[J]. 岩土力学, 2019, 40(11): 4220-4228.
[13] 杨苏春, 张明义, 王永洪, 桑松魁, 苗德滋. 基于现场试验的闭口静压管桩贯入 层状地基桩端阻力研究[J]. 岩土力学, 2018, 39(S2): 91-99.
[14] 周佳锦,龚晓南,严天龙,张日红, . 软土地区填砂竹节桩抗压承载性能研究[J]. , 2018, 39(9): 3425-3432.
[15] 戴国亮,万志辉 ,竺明星,龚维明, . 基于黏度时变性的桩端压力浆液上返高度模型及工程应用[J]. , 2018, 39(8): 2941-2950.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[5] 康厚荣, ,雷明堂,张谢东,赵杰华. 贵州省公路工程岩溶环境区划[J]. , 2009, 30(10): 3032 -3036 .
[6] 刘振平,贺怀建,李 强,朱发华. 基于Python的三维建模可视化系统的研究[J]. , 2009, 30(10): 3037 -3042 .
[7] 蒋小伟,万 力,王旭升,武 雄,程惠红. 利用RQD估算岩体不同深度的平均渗透系数和平均变形模量[J]. , 2009, 30(10): 3163 -3167 .
[8] 钟佳玉,郑永来,倪 寅. 波浪作用下砂质海床孔隙水压力的响应规律实验研究[J]. , 2009, 30(10): 3188 -3193 .
[9] 孙德安. 非饱和土的水力和力学特性及其弹塑性描述[J]. , 2009, 30(11): 3217 -3231 .
[10] 朱珍德,李道伟,蒋志坚,刘金辉,杨永杰. 温度循环作用下深埋隧洞围岩细观结构的定量描述[J]. , 2009, 30(11): 3237 -3241 .