岩土力学 ›› 2024, Vol. 45 ›› Issue (2): 364-374.doi: 10.16285/j.rsm.2023.0268

• 基础理论与实验研究 • 上一篇    下一篇

盾构淤泥质废弃黏土氧化镁固化-碳化试验及碳化机制研究

闵凡路1, 2, 3,申政1,李彦澄1,袁大军2,陈健3,李凯1   

  1. 1. 河海大学 土木与交通学院,江苏 南京 210098;2. 北京交通大学 土木建筑工程学院,北京 100091; 3. 中铁十四局集团有限公司,山东 济南 250014
  • 收稿日期:2023-03-04 接受日期:2023-07-08 出版日期:2024-02-11 发布日期:2024-02-06
  • 作者简介:闵凡路,男,1985年生,博士,教授,主要从事盾构隧道及环境岩土方面的研究与教学工作。minfanlu@126.com
  • 基金资助:
    国家自然科学基金(No. 52078189,No. 52378394);中央高校基本科研业务费专项资金(No. B230201037)

Solidification and carbonization experimental study on magnesium oxide in shield waste soil and its carbonization mechanism

MIN Fan-lu1, 2, 3, SHEN Zheng1, LI Yan-cheng1, YUAN Da-jun2, CHEN Jian3, LI Kai1   

  1. 1. College of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu 210098, China; 2. School of Civil and Architectural Engineering, Beijing Jiaotong University, Beijing 100091, China; 3. China Railway 14th Bureau Group Co., Ltd., Jinan, Shandong 250014, China
  • Received:2023-03-04 Accepted:2023-07-08 Online:2024-02-11 Published:2024-02-06
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52078189, 52378394) and the Fundamental Research Funds for the Central Universities of China (B230201037).

摘要: 盾构隧道施工产生的废弃土面临堆放、运输及处理等难题,将原材料丰富、生产耗能少、环境友好的MgO用于废弃土固化处理是一个值得探索的方法。通过改变MgO掺量am、养护龄期T、碳化时间H研究MgO固化-碳化淤泥质废弃黏土界限含水率w、无侧限抗压强度qu、弹性模量E50,结合微观形貌及矿物成分变化规律探讨其固化-碳化机制。结果表明:MgO固化-碳化具有明显的加固土体效果,加固效果随am、T呈先上升后趋于稳定的趋势,随H呈先上升后下降的趋势;不同am、T下,碳化4 h会使土体塑性指数IP降低57%以上,土体可塑性显著下降;不同am和T的固化-碳化土qu均在H为4 h时取得峰值,最高可达1.4 MPa,比碳化前强度提升了220%~350%;固化-碳化反应对土体的E50提升受am影响较大,当am超过9%时,碳化4 h试样的E50增幅在500%左右;MgO固化-碳化过程中水化产物、碳化产物不断生成和发育,形成网状、花朵聚集状的形貌,填充土颗粒间的孔隙,增强了土颗粒间的胶结作用,土体结构更为密实。该研究为长三角地区土压盾构产生的淤泥质废弃黏土的固化-碳化处理与再利用提供了思路。

关键词: 废弃土处理, 活性氧化镁, 加速碳化, 微观形貌, 矿物成分, 碳化机制

Abstract: The waste soil generated during shield tunnel construction poses a challenge in terms of stacking, transportation, and treatment. One promising approach is the use of magnesium oxide (MgO) for the solidification treatment of waste soil, as it is abundant in raw materials, has low production energy consumption, and is eco-friendly. The limit moisture content w, unconfined compressive strength qu and modulus of elasticity E50 of MgO solidified and carbonized mucky waste soil were studied by changing the MgO content am, curing age T, and carbonization time H. The solidification and carbonization mechanism of MgO-treated mucky waste soil was discussed in combination with the microstructure and the change rule of mineral composition. The results demonstrate that MgO solidification and carbonization have a significant reinforcing effect on the soil. The reinforcement effect initially increases and then stabilizes with increasing am and T, while it shows an initial increase followed by a decrease with H. Carbonization for 4 hours reduces the soil plasticity index (IP) by more than 57% under different am and T conditions, leading to a significant reduction in soil plasticity. The qu of solidified and carbonized soils reaches a peak value at H of 4 hours, with values up to 1.4 MPa, which is 220%–350% higher than the strength before carbonization. The effect of solidification and carbonization reaction on the increase in E50 of the soil mass is greatly influenced by am. When am exceeds 9%, the E50 increase of the sample carbonized for 4 hours exceeds 500%. During the process of MgO solidification and carbonization, hydration products and carbonization products are continuously generated and developed. They form a network and flower-like microstructure, filling the pores between soil particles, enhancing cementation between soil particles, and densifying the soil structure. The research provides insights into the efficient and eco-friendly treatment and reuse of mucky waste soil produced by earth pressure shield in the Yangtze River Delta.

Key words: waste soil treatment, active magnesium oxide, accelerated carbonization, microstructure, mineral composition, carbonation mechanism

中图分类号: 

  • TU 452
[1] 田威, 王肖辉, 云伟, 程续. 基于不同后处理方法的砂型3D打印类岩石试样力学性能研究[J]. 岩土力学, 2023, 44(5): 1330-1340.
[2] 段玲玲, 邓华锋, 齐豫, 李冠野, 彭萌. 水-岩作用下单裂隙灰岩渗流特性演化规律研究[J]. 岩土力学, 2020, 41(11): 3671-3679.
[3] 黄涛, 方祥位, 张伟, 申春妮, 雷宇龙, . 活性氧化镁−微生物固化黄土试验研究[J]. 岩土力学, 2020, 41(10): 3300-3306.
[4] 徐云山, 孙德安, 曾召田, 吕海波, . 膨润土热传导性能的温度效应[J]. 岩土力学, 2020, 41(1): 39-45.
[5] 赵波, 张广清, 唐梅荣, 庄建满, 林灿坤, . 长期注水对致密砂岩油藏岩石力学 性质影响机制研究[J]. 岩土力学, 2019, 40(9): 3344-3350.
[6] 邓华锋,王晨玺杰,李建林,张吟钗,王 伟,张恒宾. 加载速率对砂岩抗拉强度的影响机制[J]. , 2018, 39(S1): 79-88.
[7] 张 帆,胡 维,郭翰群,胡大伟,盛 谦,邵建富,. 热处理后花岗岩纳米压痕试验研究[J]. , 2018, 39(S1): 235-243.
[8] 刘松玉,曹菁菁,蔡光华, . 活性氧化镁碳化固化粉质黏土微观机制[J]. , 2018, 39(5): 1543-1552.
[9] 苏承东,韦四江,秦本东,杨玉顺,. 高温对细砂岩力学性质影响机制的试验研究[J]. , 2017, 38(3): 623-630.
[10] 李 毅, . 岩石裂隙的非饱和渗透特性及其演化规律研究[J]. , 2016, 37(8): 2254-2262.
[11] 于博伟,杜延军,刘辰阳,薄煜琳. 活性MgO碱性激发粒化高炉矿渣固化黏土的抗硫酸盐侵蚀试验研究[J]. , 2015, 36(S2): 64-72.
[12] 谈云志,喻 波,刘 云,左清军,胡莫珍,郑 爱. 重塑石灰土的强度恢复方法与机制初探[J]. , 2015, 36(3): 633-639.
[13] 伍 艳 ,任海平 ,王玮屏 ,兰 雁 ,沈细中 , . 总氮对土物理力学性能影响的试验研究[J]. , 2014, 35(8): 2278-2285.
[14] 梁和成,单慧媚. 天然饱水-失水对三峡库岸边坡土体的影响研究[J]. , 2014, 35(7): 1837-1843.
[15] 马雯波 ,饶秋华 ,吴鸿云 ,郭帅成 ,李 鹏,. 深海稀软底质土宏观性能与显微结构分析[J]. , 2014, 35(6): 1641-1646.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[5] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[6] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[7] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[8] 杨 坤,周创兵,王同旭. 多种外界随机荷载综合作用下的坝坡风险评价[J]. , 2009, 30(10): 3057 -3062 .
[9] 吴振君,王水林,葛修润. 约束随机场下的边坡可靠度随机有限元分析方法[J]. , 2009, 30(10): 3086 -3092 .
[10] 刘 斌,李术才,李树忱,钟世航. 隧道含水构造直流电阻率法超前探测研究[J]. , 2009, 30(10): 3093 -3101 .