岩土力学 ›› 2024, Vol. 45 ›› Issue (3): 685-696.doi: 10.16285/j.rsm.2023.0471

• 基础理论与实验研究 • 上一篇    下一篇

循环加卸载过程中灰岩微细观损伤特征的试验研究

刘汉香1,叶刁瑜1,别鹏飞1,朱星2   

  1. 1. 成都理工大学 环境与土木工程学院,四川 成都 610059;2. 成都理工大学 计算机与网络安全学院,四川 成都 610059
  • 收稿日期:2023-04-14 接受日期:2023-08-14 出版日期:2024-03-11 发布日期:2024-03-20
  • 作者简介:刘汉香,女,1986年生,博士,副教授,主要从事岩土动力学及边坡地震工程研究。E-mail: hxliu_86@163.com
  • 基金资助:
    四川省科技计划(No.2021YFSY0036);国家重点研发计划(No.2022YFC3003205,No.2019YFC1509602)。

Experimental study of microscopic and mesoscopic damage features of limestone under cyclic loading and unloading

LIU Han-xiang1, YE Diao-yu1, BIE Peng-fei1, ZHU Xing2   

  1. 1. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, China; 2. College of Computers and Cyber Security, Chengdu University of Technology, Chengdu, Sichuan 610059, China
  • Received:2023-04-14 Accepted:2023-08-14 Online:2024-03-11 Published:2024-03-20
  • Supported by:
    This work was supported by the Sichuan and Technology Program (2021YFSY0036) and the National Key Research and Development Program (2022YFC3003205, 2019YFC1509602).

摘要: 岩石的动力学性质是影响岩质边坡地震动力稳定性的关键内因。地震产生的循环往复作用会造成岩石损伤和破坏,劣化岩石性能,降低岩质边坡的稳定性。为了深入研究岩石在动力荷载下的损伤特征,以某岩质斜坡出露的二叠系灰岩为研究对象,联合单轴循环加卸载试验和微细观试验,从微细观角度研究了岩样在循环加卸载过程中的损伤特征和损伤演化规律,分析了不同加载条件对微细观损伤的影响,开展了宏观和微细观参数的关联分析。研究结果表明:岩样内部的损伤是一个渐进性过程,在破坏前,随着应力幅值和循环周次的增加,表现为以小孔隙的生成、扩展和贯通为主,大孔隙的数量轻微增加且数量相对少得多;与变上限应力加载相比,变下限应力加载更有利于小孔隙的连通和大孔隙的形成,导致岩样内部微裂隙面积更大,在宏观上表现为平均弹性模量的降低;在变上限应力时,低应力幅值的循环荷载对岩石内部结构劣化效应比单轴压缩条件下的大,而高应力幅值的循环荷载反而可能对岩石内部孔隙有一定压密作用,导致孔隙度相对较小,劣化效应相对减弱;综合多种微细观损伤变量演化趋势,可判断岩样在循环加卸载下经历了一段裂纹稳定扩展的阶段,对应的上限应力和下限应力范围分别为(0.4~0.6)σfσf为静态峰值强度)和(0.3~0.5)σf。研究成果有助于从微细观层次更好地理解岩石的动力学特性,为岩质斜坡在地震作用下的动力响应行为和灾害孕育及启动过程提供理论解释。

关键词: 灰岩, 微细观损伤, 单轴循环加卸载试验, 核磁共振试验, 电镜扫描试验

Abstract:

The dynamic property of rock is a crucial internal factor which influences the seismic stability of a rock slope. Cyclic loading induced by an earthquake can lead to rock damage, deterioration in rock performance, and a decrease in slope stability. To investigate the dynamic damage characteristics of rock in-depth, this study examines Permian limestone samples obtained from a rock slope. Uniaxial cyclic loading and unloading tests, combined with microscopic and mesoscopic analyses, are conducted to study the damage features and evolution rules of rock specimens. The effects of different loading conditions on the microscopic and mesoscopic damage of rock specimens are analyzed, and the correlation between macroscopic, microscopic and mesoscopic parameters is investigated. The results reveal that rock damage is progressive, primarily characterized by the generation, propagation, and connection of micropores, followed by a slight increase in macropores, which are present in smaller quantities. Compared to cyclic loading with a variable upper limit stress, loading with a variable lower limit stress promotes greater connectivity of micropores and the formation of macropores, resulting in a larger microfissure area in the rock specimen and a decrease in the average elastic modulus. Under loading with a variable upper limit stress, low stress amplitudes have a more significant degradation effect on the internal structure of the rock compared to uniaxial compression. Conversely, high stress amplitudes may compact the internal pores of the rock, leading to relatively low porosity and weakened deterioration effects. By considering the evolution trends of different microscopic damage variables, a steady crack development phase is observed, with the corresponding upper limit stress range being 0.4−0.6 times the static peak strength(σf), and the lower limit stress range being 0.3−0.5 times the static peak strength. These research findings enhance our understanding of the dynamic characteristics of rock at the micro- and meso-levels. They also provide theoretical explanations for the dynamic behavior of rock slopes and the initiation process of disasters under seismic conditions.

Key words: limestone, microscopic and mesoscopic damage, uniaxial cyclic loading and unloading test, nuclear magnetic resonance test, scanning electron microscopy test

中图分类号: 

  • TU452
[1] 闫国强, 殷跃平, 黄波林, 胡雷, . 三峡库区顺层灰岩岸坡劣化−溃屈灾变机制研究[J]. 岩土力学, 2022, 43(9): 2568-2580.
[2] 刘海峰, 郑坤, 朱长歧, 孟庆山, 吴文娟. 基于应力−应变曲线的礁灰岩脆性特征评价[J]. 岩土力学, 2021, 42(3): 673-680.
[3] 罗刚, 张辉傲, 马国涛, 周海文, 胡卸文, 王文健, 王文沛, . 高速岩质滑坡滑面滑动摩擦特性研究——以王山 抓口寺滑坡为例[J]. 岩土力学, 2020, 41(7): 2441-2452.
[4] 刘海峰, 朱长歧, 汪稔, 王新志, 崔翔, 王天民, . 礁灰岩-混凝土界面剪切特性试验研究[J]. 岩土力学, 2020, 41(5): 1540-1548.
[5] 杨赫, 程卫民, 刘震, 王文玉, 赵大伟, 王文迪. 注水煤体有效渗流通道结构分形特征 核磁共振试验研究[J]. 岩土力学, 2020, 41(4): 1279-1286.
[6] 郑坤, 孟庆山, 汪稔, 余克服, . 珊瑚骨架灰岩三轴压缩声发射特性研究[J]. 岩土力学, 2020, 41(1): 205-213.
[7] 雷华阳, 胡垚, 雷尚华, 祁子洋, 许英刚, . 增压式真空预压加固吹填超软土微观结构特征分析[J]. 岩土力学, 2019, 40(S1): 32-40.
[8] 郑坤, 孟庆山, 汪稔, 吴文娟, . 不同结构类型珊瑚礁灰岩弹性波特性研究[J]. 岩土力学, 2019, 40(8): 3081-3089.
[9] 宋战平, 程昀, 杨腾添, 霍润科, 王军保, 刘新荣, . 渗透压作用对灰岩孔隙结构演化规律影响 的试验研究[J]. 岩土力学, 2019, 40(12): 4607-4619.
[10] 孟庆山, 范 超, 曾卫星, 余克服, . 南沙群岛珊瑚礁灰岩的动态力学性能试验[J]. 岩土力学, 2019, 40(1): 183-190.
[11] 刘海峰,朱长歧,孟庆山,王 星,李小刚,吴文娟, . 礁灰岩嵌岩桩的模型试验[J]. , 2018, 39(5): 1581-1588.
[12] 万志辉,戴国亮,龚维明, . 珊瑚礁灰岩层后压浆桩增强效应作用机制[J]. , 2018, 39(2): 467-473.
[13] 罗 刚,梅雪峰,师陆冰,胡卸文,金 涛,王文健,马洪生,. 石灰岩高速滚动摩擦特性[J]. , 2018, 39(2): 474-482.
[14] 许 江,马天宇,大久保诚介,彭守建,汤 杨,陈灿灿,王 哲. 不同围压下岩石广义应力松弛特性试验研究[J]. , 2017, 38(S2): 57-66.
[15] 张海龙,许 江,大久保诚介,羽柴公博,福井胜则,彭守建,. 河津凝灰岩广义应力松弛特性及数值模拟研究[J]. , 2017, 38(4): 1089-1096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .