岩土力学 ›› 2024, Vol. 45 ›› Issue (3): 788-796.doi: 10.16285/j.rsm.2023.0493

• 基础理论与实验研究 • 上一篇    下一篇

竖向和水平组合荷载下能量桩单桩变形特性

蒋济泽1,王成龙1, 2, 3,黄煜镔1,赵华1,陈志雄1   

  1. 1. 重庆大学 土木工程学院,重庆 400045;2. 大足石刻研究院,重庆 402360;3. 重庆市地质矿产勘查开发局,重庆 401121
  • 收稿日期:2023-04-20 接受日期:2023-12-03 出版日期:2024-03-11 发布日期:2024-03-20
  • 通讯作者: 王成龙,男,1989年生,博士,副教授,主要从事能源地下结构、桩?土相互作用方面的科研工作研究。E-mail: wangchlong586@163.com
  • 作者简介:蒋济泽,男,2000年生,硕士研究生,主要从事岩土工程方面的科研工作。E-mail: jjz2332s@163.com
  • 基金资助:
    国家自然科学基金(No.52278396);中国博士后科学基金(No.2022M720591);重庆市博士后研究项目特别资助(No.2022CQBSHTB3006)。

Deformation characteristics for single energy pile under combined loads in vertical and horizontal directions

JIANG Ji-ze1, WANG Cheng-long1, 2, 3, HUANG Yu-bin1, ZHAO Hua1, CHEN Zhi-xiong1   

  1. 1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Academy of Dazu Rock Carvings, Chongqing 402360, China; 3. Chongqing Bureau of Geology and Minerals Exploration, Chongqing 401121, China
  • Received:2023-04-20 Accepted:2023-12-03 Online:2024-03-11 Published:2024-03-20
  • Supported by:
    This work was supported by National Natural Science Foundation of China (52278396), China Postdoctoral Science Foundation (2022M720591) and Special Foundation of Postdoctoral Support Program, Chongqing (2022CQBSHTB3006).

摘要: 能量桩作为一种新型能源地下结构,在承受上部建筑荷载同时,能够获取浅层地热能。目前针对水平荷载与竖向荷载共同作用下的能量桩热力学特性的研究较少,而水平荷载与竖向荷载共同作用下,桩身温度变化会引起桩体弯矩、水平和竖向位移等发生变化。基于模型试验,对桩体施加10次冷热循环,开展了竖向和水平组合荷载下能量桩的变形特性研究。结果表明,组合荷载下冷热循环会进一步增大桩身弯矩,且对桩体中部的影响更大,最大桩身弯矩增幅达到了117%;冷热循环会产生桩顶累积位移,试验桩竖向位移增加了0.201 mm,温度作用引起的水平位移增加值达到了1.46% D(D为桩体直径);同时,冷热循环会导致桩向桩前倾斜,10次冷热循环后转角达到1.88×10−3 rad,且会随着循环次数增加有缓慢增加趋势;加热时桩前土压力减小,而制冷时使桩前土压力增大。

关键词: 能量桩, 组合荷载, 模型试验, 冷热循环, 热力学特性

Abstract: Energy piles, as innovative energy underground structure, serve the dual purpose of shallow extracting geothermal energy while bearing the upper building load. There are few studies on the thermomechanical properties of energy piles under combined horizontal and vertical loads. The temperature change of pile body under combined horizontal and vertical loads will result in variations in pile bending moment, horizontal and vertical displacement, etc. This paper investigated the deformation characteristics of energy piles under combined vertical and horizontal loads through model tests with 10 heating-cooling cycles applied to the piles. The results showed that the heating-cooling cycles under combined load led to further increase in the pile bending moment, particularly affecting the middle section of the pile, with the maximum increase in pile bending moment reaching 117%. Additionally, the heating-cooling cycles caused cumulative displacement at the top of the pile. The vertical displacement of the test pile increased by 0.201 mm, and the increase in horizontal displacement due to the thermal cycles reached 1.46% D (D is the diameter of the pile). Simultaneously, the heating-cooling cycles induced a forward tilt of the pile, with the tilt angle reached 1.88×10−3 rad after 10 heating-cooling cycles and gradually increasing with the number of thermal cycles. Moreover, the soil pressure in front of the pile decreased during heating, while increased during cooling.

Key words: energy pile, combined load, model test, heating-cooling cycles, thermo-mechanical behavior

中图分类号: 

  • TU473.1
[1] 张冬梅, 张学亮, 杜伟伟, . 基于离散单元法的渗流侵蚀作用下桩基位移与承载特性研究[J]. 岩土力学, 2024, 45(4): 1181-1189.
[2] 朱姝, 阙相成, 朱珍德, 朱其志, . 考虑截面规则性的柱状节理岩体变形及强度特性研究[J]. 岩土力学, 2024, 45(1): 213-225.
[3] 王斌, 李洁涛, 王佳俊, 陈鹏林, . 强降雨诱发堆积体滑坡模型试验研究[J]. 岩土力学, 2023, 44(S1): 234-248.
[4] 杨凯丞, 吴曙光, 廖海成, 张辉, . 双锚杆受力机制分析及模型试验研究[J]. 岩土力学, 2023, 44(S1): 495-503.
[5] 银吉超, 白晓宇, 张亚妹, 闫楠, 王永洪, 张明义, . 一种模拟原状泥岩动力打桩与静载试验 装置的研制及应用[J]. 岩土力学, 2023, 44(S1): 698-710.
[6] 邹维列, 樊科伟, 张攀, 韩仲, . 土工泡沫减压膨胀土挡墙侧向压力及影响因素分析[J]. 岩土力学, 2023, 44(9): 2537-2544.
[7] 刘欣, 沈宇鹏, 刘志坚, 王炳禄, 刘越, 韩昀希. 地下水流速对地铁联络通道冻结壁形成过程影响的模型试验[J]. 岩土力学, 2023, 44(9): 2667-2678.
[8] 谢康, 苏谦, 陈晓斌, 刘宝, 王武斌, 王迅, 邓志兴, . 无砟轨道聚氨酯碎石防水联结层单元模型试验研究[J]. 岩土力学, 2023, 44(8): 2308-2317.
[9] 卢钦武, 关振长, 林林, 吴淑婧, 宋德杰. 基于静力推覆试验的山岭隧道衬砌-地层相互作用机制研究[J]. 岩土力学, 2023, 44(8): 2318-2326.
[10] 张院生, 雷云超, 强小俊, 吴东东, 王东坡, 王计华, . 多排微型桩框架结构加固边坡离心模型试验研究[J]. 岩土力学, 2023, 44(7): 1983-1994.
[11] 季雨坤, 王钦科, 赵国良, 张健, 马建林, . 斜坡上嵌岩抗拔桩竖向承载变形特性模型试验及数值模拟[J]. 岩土力学, 2023, 44(6): 1604-1614.
[12] 马鹏杰, 芮瑞, 曹先振, 夏荣基, 王曦, 丁锐恒, 孙天健, . 微型桩加固长大缓倾裂隙土边坡模型试验[J]. 岩土力学, 2023, 44(6): 1695-1707.
[13] 彭文明, 张雪东, 夏勇, . 软弱覆盖层上土石坝动力离心模型试验研究[J]. 岩土力学, 2023, 44(6): 1771-1778.
[14] 冷先伦, 王川, 盛谦, 宋文军, 陈健, 张占荣, 陈菲, . 基于透明相似模型试验的主控裂隙边坡变形破坏演化机制研究[J]. 岩土力学, 2023, 44(5): 1283-1294.
[15] 宋洋, 王宏帅, 李昂, 王鑫, 肖作明, 苑强, . 富水粉细砂层盾尾同步注浆浆液渗透-压密扩散机制研究[J]. 岩土力学, 2023, 44(5): 1319-1329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .