岩土力学 ›› 2024, Vol. 45 ›› Issue (5): 1397-1411.doi: 10.16285/j.rsm.2023.0670

• 基础理论与实验研究 • 上一篇    下一篇

考虑衬砌截面协调变形约束的既有隧道受盾构下穿施工影响的Fourier能量变分解

张治国1, 2, 3, 4, 5,沃巍1,朱正国2,韩凯航3,孙苗苗4, 5   

  1. 1. 上海理工大学 环境与建筑学院,上海 200093; 2. 石家庄铁道大学 省部共建交通工程结构力学行为与系统安全国家重点实验室,河北 石家庄 050043; 3. 深圳大学 土木与交通工程学院,广东 深圳 518061;4. 浙大城市学院 土木工程系,浙江 杭州 310015; 5. 城市基础设施智能化浙江省工程研究中心,浙江 杭州 310015
  • 收稿日期:2023-05-27 接受日期:2023-07-10 出版日期:2024-05-11 发布日期:2024-05-07
  • 作者简介:张治国,男,1978年生,博士(后),教授,博士生导师,主要从事地下工程施工环境影响等方面的教学与研究工作。 E-mail: zgzhang@usst.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(No. 42177145);省部共建交通工程结构力学行为与系统安全国家重点实验室课题(No. KF2022-07);城市基础设施智能化浙江省工程研究中心课题(No. IUI2022-YB-01)

Fourier energy variational solution of effects on existing tunnels induced by shield tunneling considering coordinated deformation of lining cross-section

ZHANG Zhi-guo1, 2, 3, 4, 5, WO Wei1, ZHU Zheng-guo2, HAN Kai-hang3, SUN Miao-miao4, 5   

  1. 1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China; 2. State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China; 3. College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong 518061, China; 4. Department of Civil Engineering, Zhejiang University City College, Hangzhou, Zhejiang 310015, China; 5. Zhejiang Engineering Research Center of Intelligent Urban Infrastructure, Hangzhou, Zhejiang 310015, China
  • Received:2023-05-27 Accepted:2023-07-10 Online:2024-05-11 Published:2024-05-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China(42177145), the Opening Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures(KF2022-07) and the Opening Fund of Zhejiang Engineering Research Center of Intelligent Urban Infrastructure(IUI2022-YB-01).

摘要: 目前关于新建盾构开挖诱发既有地铁隧道变形的理论研究,大多将既有隧道简化为不含接头的Euler-Bernoulli梁,而忽视了衬砌截面的剪切变形与管片接头的局部刚度削弱。此外,既有地基模型理论较少考虑衬砌管片与接触土体的协调变形约束。首先,采用Loganathan-Polous公式计算盾构开挖诱发的土体自由位移场,并将既有隧道视为考虑剪切变形的Timoshenko梁,基于沿轴线变化的抗弯与剪切刚度函数来描述管片接头的局部削弱作用;然后,结合能量变分原理与连续弹性体Mindlin解,建立考虑衬砌截面协同变形约束的隧道位移控制方程,将盾构开挖诱发的附加荷载施加于既有隧道,并使用Fourier级数方法求解既有隧道纵向变形;最后,将Fourier能量变分解与3组工程实测数据进行对比验证,取得了较好的一致性。此外,考虑隧道抗弯刚度、剪切刚度、接头刚度削弱作用、土体参数与隧道空间位置等因素的共同影响,使用抗弯系数、剪切系数及接头系数进行敏感性分析。结果表明,考虑截面变形协调约束的理论解更为符合实际,不考虑变形协调约束所得隧道位移结果偏大;衬砌接头局部刚度的削弱作用将造成隧道弯矩沿轴线在接头处发生明显锯齿状突变;抗弯系数与剪切系数的增长均导致隧道结构所受弯矩降低;剪切系数由低到高的增长将导致隧道变形模式发生“弯曲控制-弯剪混合-剪切控制”三阶段变化;隧道变形模式进入“剪切控制”阶段的过程中,抗弯刚度的变化对隧道内力影响逐渐降低;接头系数的增长将造成隧道所受弯矩降低,但隧道抗弯刚度较大时其影响逐渐减弱。

关键词: 盾构隧道, 截面协调变形, 接头刚度削弱, 隧道剪切变形, Timoshenko梁, Fourier能量变分

Abstract: Current theoretical researches on shield tunneling induced existing metro tunnels deformation generally simplify the existing tunnels as Euler-Bernoulli beams without joints, neglecting the tunnel shear deformation and the local stiffness reduction caused by joints. Additionally, the existing foundation model theory rarely incorporates the coordination between lining cross-section and soil deformation. The study utilizes the Loganathan and Polous method to establish the shield tunneling-induced soil greenfield. To account for the local stiffness reduction, the paper then treats the existing tunnel as a Timoshenko beam, with the tunnel stiffness function varying along the axis. By combining the energy principle and the Mindlin solution, the paper stablishes the tunnel displacement equation considering the coordinated constraint between tunnel and soil. The soil greenfield is applied to the tunnel, resulting in longitudinal deformation, which is solved by Fourier series. Finally, the Fourier energy variational solution is verified by three sets of engineering data, achieving good consistency. To conduct parameter analysis, the relative effects among factors such as bending stiffness, shear stiffness, joint action, soil parameters and space relationship are also adopted. Analysis results indicate that the theoretical solution considering the coordinated constraints of cross-section aligns more closely with the field data. Tunnel displacement results obtained without considering the coordination constraints tend to be larger. The local stiffness weakening effect of joint will cause significant sudden variations in tunnel bending moments along the axis. The increase in both bending and shear stiffness coefficients leads to a decrease in the bending moment of the tunnel structure. Changes in shear stiffness coefficient from low to high would result in a three-stage process of the tunnel deformation mode, which is from bending controlled stage to bending-shear mixed stage and then to shear controlled stage. As the tunnel deformation mode enters the shear-controlled stage, the effect of bending stiffness coefficients gradually weakens. An increase in the joint coefficient generally causes a decrease in the bending moment of the tunnel, but the impact is slight as the bending coefficient increases.

Key words: shield tunnel, cross-sectional coordinated deformation, joint stiffness reduction, tunnel shear deformation, Timoshenko beam, Fourier energy variation

中图分类号: 

  • U 451
[1] 黄大维, 刘家璇, 谭满生, 邓翔浩, 黄永亮, 翁友华, 陈升平, . 盾构隧道底部注浆抬升模拟试验研究[J]. 岩土力学, 2024, 45(S1): 371-381.
[2] 王小刚, 杨建平, 陈卫忠, 李慧, . 盾构隧道结构响应特征及接缝刚度分析[J]. 岩土力学, 2024, 45(S1): 485-495.
[3] 张治国, 罗杰, 朱正国, PAN Y T, 孙苗苗, . 基于极限分析上限法的地震作用下分层地基 盾构隧道开挖面稳定性研究[J]. 岩土力学, 2024, 45(4): 1201-1213.
[4] 潘秋景, 吴洪涛, 张子龙, 宋克志, . 基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测[J]. 岩土力学, 2024, 45(2): 539-551.
[5] 黄继辉, 秦世康, 赵昱, 陈景煦, 张浩, . 压气法盾构仓内气压与围岩气−液两相流相互作用模型研究[J]. 岩土力学, 2024, 45(12): 3555-3565.
[6] 李文博, 甘晓露, 刘念武, 吴昊, 谌珊珊. 基于短梁−弹簧模型的盾构隧道施工期上浮变形计算方法[J]. 岩土力学, 2024, 45(12): 3755-3767.
[7] 真嘉捷, 赖丰文, 黄明, 李爽, 许凯. 基于LightGBM-Informer的盾构隧道管片上浮长时间序列预测模型[J]. 岩土力学, 2024, 45(12): 3791-3801.
[8] 任璐瑶, 吴镇杰, 黄啟超, 关振长. 考虑轴力影响的盾构隧道纵向地震响应解析[J]. 岩土力学, 2024, 45(10): 2971-2980.
[9] 张治国, 叶铜, 朱正国, PAN Y T, 吴钟腾, . 波浪作用下含气海床内盾构隧道水力及位移响应分析[J]. 岩土力学, 2023, 44(6): 1557-1574.
[10] 钟小春, 黄思远, 槐荣国, 朱诚, 胡一康, 陈旭泉, . 基于浆液浮力试验的盾尾管片纵向上浮特征研究[J]. 岩土力学, 2023, 44(6): 1615-1624.
[11] 王祖贤, 施成华, 龚琛杰, 曹成勇, 彭铸, 孙影杰, . 考虑横向性能的盾构隧道纵向非线性等效抗弯刚度计算模型[J]. 岩土力学, 2023, 44(5): 1295-1308.
[12] 刘勇, 周怡晟, 索晓明, 樊浩博, 曹毅泽, 杜志田, . 盾构下穿高铁路基变形规律模型试验研究[J]. 岩土力学, 2023, 44(4): 941-951.
[13] 吴宏, 叶治, 张宇亭, 刘华北, . 穿越不同密实度饱和砂土地层的盾构隧道地震响应三维数值分析[J]. 岩土力学, 2023, 44(4): 1204-1216.
[14] 张治国, 罗杰, 朱正国, PAN Y T, 孙苗苗, . 强降雨影响下盾构隧道开挖面稳定性的三维对数螺旋模型上限解[J]. 岩土力学, 2023, 44(12): 3587-3601.
[15] 管凌霄, 徐长节, 王雪鹏, 夏雪勤, 可文海, . 基坑开挖及降水引起下卧隧道变形的解析解[J]. 岩土力学, 2023, 44(11): 3241-3251.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙 勇. 滑坡面下双排抗滑结构的计算方法研究[J]. , 2009, 30(10): 2971 -2977 .
[2] 王 威,王水林,汤 华,周平根. 基于三维GIS的滑坡灾害监测预警系统及应用[J]. , 2009, 30(11): 3379 -3385 .
[3] 张强勇,刘德军,贾 超,沈 鑫,刘 健,段 抗. 盐岩油气储库介质地质力学模型相似材料的研制[J]. , 2009, 30(12): 3581 -3586 .
[4] 曹雪山,殷宗泽. 非饱和土二维固结简化计算的研究[J]. , 2009, 30(9): 2575 -2580 .
[5] 高 千,王 靖,杨志法,张路青,祝介旺,郑 舰,傅 燕. 龙游石窟1~3号洞室稳定性分析及安全通道路线的选择[J]. , 2009, 30(9): 2713 -2721 .
[6] 马远刚,杨春和. 极限状态及变形量控制下自平衡试桩承载力分析[J]. , 2009, 30(9): 2787 -2791 .
[7] 瞿万波,刘新荣,傅晏,秦晓英. 洞桩法大断面群洞交叉隧道初衬数值模拟[J]. , 2009, 30(9): 2799 -2804 .
[8] 汪 洋,周 丽,殷坤龙. 基于土条周边水压力分析的水下滑体稳定性研究[J]. , 2010, 31(4): 1068 -1071 .
[9] 王川婴,胡培良,孙卫春. 基于钻孔摄像技术的岩体完整性评价方法[J]. , 2010, 31(4): 1326 -1330 .
[10] 李华明,蒋关鲁,刘先峰. CFG桩加固饱和粉土地基的动力特性试验研究[J]. , 2010, 31(5): 1550 -1554 .