岩土力学 ›› 2024, Vol. 45 ›› Issue (S1): 557-567.doi: 10.16285/j.rsm.2023.0674

• 岩土工程研究 • 上一篇    下一篇

基于旁压试验的饱和黄土强度分类评价方法研究

亢佳伟1,邓国华1, 2,康佐3   

  1. 1. 西安理工大学 岩土工程研究所,陕西 西安 710048;2. 西安黄土地下工程技术咨询有限公司,陕西 西安 710054; 3. 西安市轨道交通集团有限公司,陕西 西安 710018
  • 收稿日期:2023-05-29 接受日期:2023-08-03 出版日期:2024-09-18 发布日期:2024-09-21
  • 通讯作者: 邓国华,男,1979年生,博士,高级工程师,主要从事黄土力学与黄土工程的研究工作。E-mail: gh_deng@163.com
  • 作者简介:亢佳伟,男,1996年生,博士研究生,主要从事黄土力学方向的研究工作。E-mail: Jiawei_Kang@126.com
  • 基金资助:
    国家自然科学基金(No.52178355);陕西省自然科学基础研究计划资助(No.2022JM-216)。

Strength classification and evaluation method for saturated loess using pressuremeter test method

KANG Jia-wei1, DENG Guo-hua1, 2, KANG Zuo3   

  1. 1. Institute of Geotechnical Engineering, Xi’an University of Technology, Xi’an, Shaanxi 710048, China; 2. Xi’an Loess Underground Engineering Technology Consulting Co., Ltd., Xi’an, Shaanxi 710054, China; 3. Xi’an Rail Transit Group Co., Ltd., Xi’an, Shaanxi 710018, China
  • Received:2023-05-29 Accepted:2023-08-03 Online:2024-09-18 Published:2024-09-21
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52178355) and the Natural Science Basic Research Program of Shaanxi Province (2022JM-216).

摘要: 天然沉积条件下,饱和黄土具有显著差异的物性沉积状态、强度和变形规律,在水、力和时间等因素的共同作用下,由欠压密状态向正常压密状态持续演变。旁压试验有效规避了取样扰动和室内外应力状态的差异,是合理认识饱和黄土特征强度的有效手段。针对旁压曲线及其3个特征压力值和两个特征强度指标分别和埋深、初始孔隙比、液性指数IL等指标开展相关性分析,得到了饱和黄土强度的关键影响因素;并在此基础上定义了适用于饱和黄土的水敏性参数mω,建立基本物性指标和特征强度之间的对应关系,提出两类饱和黄土的性质区分依据和欠压密饱和黄土的强度分区原则。研究表明:(1)饱和黄土的特征强度受到欠压密状态、稠度特征的综合影响,仅依赖单一物性状态指标,无法对其特征强度进行有效、合理的评价;(2)以饱和黄土的特征强度开始出现指数衰减特征的临界特征值(mω = 0.5)为划分指标,可以区分两类饱和黄土的强度差异;(3)以水敏性参数mω= 0.75/1.3为界,可将欠压密饱和黄土强度的长期演化过程划分为初期、中间和后期3个特征阶段,并给出了不同阶段内土体特征强度范围值。

关键词: 饱和黄土, 旁压试验, 强度评价方法, 水敏性参数

Abstract: Saturated loess exhibits significant physical property variations and distinctive sedimentation, and strength and deformation patterns under natural sedimentary conditions. With the combined action of water, force, and time, saturated loess undergoes a continuous transformation from an uncompacted state to a compacted state. Pressuremeter testing is a reliable in situ technique for determining the strength characteristics of saturated loess without being affected by sampling procedures. The pressuremeter curve, with three characteristic pressure values and two characteristic strength indicators, was correlated with indicators such as burial depth, initial pore ratio e, and liquid index IL. Therefore, the key influencing factors behind saturated loess strength were obtained. Based on this, the water sensitivity parameter mω applicable to saturated loess was defined. The corresponding relationship between fundamental physical properties indicators and characteristic strength was established. Additionally, the criteria for distinguishing between the properties of two types of saturated loess and the principle for categorizing the strength of uncompact saturated loess were suggested. The results showed that: 1) The characteristic strength of saturated loess is influenced by several factors, including uncompact state and consistency characteristics. Thus, relying solely on a single physical property indicator would not lead to an effective and reasonable assessment of its characteristic strength. 2) The strength difference between the two types of saturated loess can be distinguished by using the critical characteristic value (mω = 0.5) of exponential decay of the characteristic strength of saturated loess as the dividing index. 3) The long-term development of uncompacted saturated loess can be categorized into initial, intermediate, and later stages according to water sensitivity parameter boundary (mω = 0.75/1.3). The corresponding characteristic strength range values for each stage have been identified.

Key words: saturated loess, pressuremeter test, mechanical evaluation method, water sensitivity parameters

中图分类号: 

  • TU444
[1] 宋丽, 许领, 李杭州, 李伟, . 考虑中间主应力影响的非饱和黄土边坡抗滑桩间距研究[J]. 岩土力学, 2024, 45(S1): 517-524.
[2] 刘德仁, 张转军, 王旭, 张艳丰, 安政山, 金芯, . 水蒸汽增湿重塑非饱和黄土地基现场应用参数研究[J]. 岩土力学, 2023, 44(S1): 73-82.
[3] 张俊然, 宋陈雨, 姜彤, 王俪锦, 赵金玓, 熊潭清. 非饱和黄土高吸力下的水力力学特性及微观结构分析[J]. 岩土力学, 2023, 44(8): 2229-2237.
[4] 简涛, 孔令伟, 柏巍, 舒荣军, . 基于耗散能量的饱和黄土动孔压模型[J]. 岩土力学, 2023, 44(8): 2238-2248.
[5] 高旭龙, 张豫川, 黄鸿伟, 刘东发, 刘智璠, . 考虑变形影响的黄土土-水特征及其滞后效应[J]. 岩土力学, 2023, 44(8): 2350-2359.
[6] 康佐, 亢佳伟, 邓国华, . 欠压密饱和黄土基本物理力学性质研究[J]. 岩土力学, 2023, 44(11): 3117-3127.
[7] 朱旻, 陈湘生, 张国涛, 庞小朝, 苏栋, 刘继强, . 花岗岩残积土硬化土模型参数反演及工程应用[J]. 岩土力学, 2022, 43(4): 1061-1072.
[8] 王斌, 韩幽铭, 周欣, 陈成, 张先伟, 桂蕾, . 太湖湖相黏土层剪切模量衰减特性的 原位测试研究[J]. 岩土力学, 2021, 42(7): 2031-2040.
[9] 舒荣军, 孔令伟, 师文卓, 刘炳恒, 黎澄生, . 湛江结构性黏土自钻旁压试验的加载速率效应[J]. 岩土力学, 2021, 42(6): 1557-1567.
[10] 刘德仁, 徐硕昌, 肖洋, 王旭, 李建东, 张严, . 浸水入渗条件下压实黄土水−气运移规律试验研究[J]. 岩土力学, 2021, 42(12): 3260-3270.
[11] 李建东, 王旭, 张延杰, 蒋代军, 刘德仁, 李盛, . 水蒸气增湿非饱和黄土热湿迁移规律研究[J]. 岩土力学, 2021, 42(1): 186-192.
[12] 邱 敏, 袁 青, 李长俊, 肖超超, . 基于孔穴扩张理论的黏土不排水抗剪强度 计算方法对比研究[J]. 岩土力学, 2019, 40(3): 1059-1066.
[13] 刘德仁,张文清,黄新智,李承成,. 非饱和黄土边坡水热变化过程室内模型试验研究[J]. , 2017, 38(S2): 236-240.
[14] 王 进,朱泽奇,陈 健,付晓东,房 强, . 海相沉积软土的自钻式旁压试验及原位力学特性[J]. , 2017, 38(S1): 195-202.
[15] 李 姝,许 强,张立展,彭大雷,吕红宾,宋少杰,. 黑方台地区黄土强度弱化的浸水时效特征与机制分析[J]. , 2017, 38(7): 2043-2048.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[2] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[3] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[4] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .
[5] 黄润秋,徐德敏. 岩石(体)渗透性测试的体变量法研究[J]. , 2009, 30(10): 2961 -2964 .
[6] 卢 正,姚海林,骆行文,胡梦玲. 公路交通荷载作用下分层地基的三维动响应分析[J]. , 2009, 30(10): 2965 -2970 .
[7] 孙 勇. 滑坡面下双排抗滑结构的计算方法研究[J]. , 2009, 30(10): 2971 -2977 .
[8] 陈 阵,陶龙光,李 涛,李海斌,王综勇. 支护结构作用的箱基沉降计算新方法[J]. , 2009, 30(10): 2978 -2984 .
[9] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[10] 荣 冠,王思敬,王恩志,刘顺桂. 白鹤滩河谷演化模拟及P2β3玄武岩级别评估[J]. , 2009, 30(10): 3013 -3019 .