岩土力学 ›› 2024, Vol. 45 ›› Issue (5): 1457-1471.doi: 10.16285/j.rsm.2023.0947

• 基础理论与实验研究 • 上一篇    下一篇

基于桩-土界面剪切特性的单桩沉降和承载问题研究

叶帅华1, 2,辛亮亮1, 2   

  1. 1. 兰州理工大学 甘肃省土木工程防灾减灾重点实验室,甘肃 兰州 730050; 2. 兰州理工大学 西部土木工程防灾减灾教育部工程研究中心,甘肃 兰州 730050
  • 收稿日期:2023-06-29 接受日期:2023-10-06 出版日期:2024-05-11 发布日期:2024-05-07
  • 作者简介:叶帅华,男,1983年生,博士,教授,博士生导师,主要从事支挡结构、地基处理及岩土工程抗震方面的教学和研究工作。E-mail: yeshuaihua@163.com
  • 基金资助:
    国家自然科学基金(No. 52168050)

Settlement and bearing capacity of single pile based on shear characteristics of pile-soil interface

YE Shuai-hua1, 2, XIN Liang-liang1, 2   

  1. 1. Key Laboratory of Disaster Mitigation in Civil Engineering of Gansu Province, Lanzhou University of Technology, Lanzhou, Gansu 730050, China; 2. Western Center of Disaster Mitigation in Civil Engineering, Ministry of Education, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
  • Received:2023-06-29 Accepted:2023-10-06 Online:2024-05-11 Published:2024-05-07
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52168050).

摘要: 近年来,西北地区出现了许多高填方场地,为减小建筑物基础的不均匀沉降,基础类型广泛使用桩基础。与一般场地不同,黄土填方场地中的单桩桩周土受力后仍会产生较大的变形,该类场地单桩沉降机制复杂。桩顶总沉降计算是桩基设计的重要依据,为此,建立了高填方黄土场地单桩桩顶总沉降计算模型。基于传统的荷载传递法和剪切位移法,分别考虑桩-土界面的桩-土相互作用和桩-土界面外剪切带土体的剪切变形。依据桩端边界,将单桩类型分为摩擦桩和端承摩擦桩,分别建立桩周土弹性阶段和塑性阶段的桩身位移控制微分方程,结合边界条件进行求解,得到桩身位移、轴力、侧摩阻力,并通过弹塑性理论求解了桩周土剪切带土体剪切变形,进而通过叠加原理求得桩顶总沉降。用桩长与桩周土塑性发展深度的比值,定义了桩基承载力安全系数K。通过算例分析与现场试验数据对比分析,研究结果表明:使用新的模型计算得到的桩顶总沉降与现场试验结果相近;当桩顶荷载较小、桩周土处于弹性阶段时,桩端边界对桩身轴力、位移和侧摩阻力影响很小,但桩周土进入塑性滑移阶段后,桩端边界的影响开始变大,考虑桩端土的承载能力会极大提高单桩极限承载力;建立了将荷载传递法和剪切位移法综合起来的计算模型,不仅可以考虑桩-土界面的相对滑移,还可以计算桩-土界面外土体剪切带的剪切变形,使得桩顶总沉降计算更加精确,可为类似场地中单桩沉降的分析与控制提供一定的参考。

关键词: 荷载传递法, 剪切位移法, 桩-土界面, 桩-土剪切带, 桩顶沉降, 承载特性分析

Abstract: In recent years, the northwest region has seen an increase in high embankment sites, leading to widespread use of pile foundations to mitigate uneven settlement of building foundations. However, in loess embankment sites, single piles experience significant deformation in the surrounding soil after loading, complicating the settlement mechanism of such single piles. As pile head settlement calculation is crucial for pile foundation design, this paper establishes a calculation model for pile head settlement of single piles in high embankment loess sites. The proposed model considers the interaction between piles and soil at the pile-soil interface and the shear deformation of the soil in the shear zone outside the pile-soil interface, based on the traditional load transfer method and shear displacement method. It classifies single pile types into friction piles and end-bearing friction piles based on the pile end boundary and establishes differential equations for pile body displacement control in both the elastic and plastic phases of the surrounding soil. Solving these equations with boundary conditions yields pile body displacement, axial force, and lateral friction resistance. Additionally, the model calculates the shear deformation of the soil in the pile-soil interface zone using elastoplastic theory and determines the total settlement at the pile head using the superposition principle. The ratio of pile length to the plastic development depth of the surrounding soil is defined as the pile bearing capacity safety factor, denoted as K. Results from case studies and comparisons with field test data demonstrate that the pile head total settlement calculated using the model proposed in this paper aligns closely with the field test results. When the pile head load is relatively small and the surrounding soil is in the elastic phase, the influences of the pile end boundary on pile body axial force, displacement, and lateral friction resistance are minimal. However, as the surrounding soil enters the plastic slip phase, the effect of the pile end boundary becomes more significant, and considering the bearing capacity of the pile end soil greatly enhances the ultimate bearing capacity of the single pile. This paper establishes a comprehensive calculation model that combines the load transfer method and the shear displacement method. It not only accounts for the relative slip at the pile-soil interface but also calculates the shear deformation of the soil in the zone outside the pile-soil interface. This leads to a more accurate calculation of the pile head total settlement and provides valuable insights for the analysis and control of single pile settlements in similar sites.

Key words: load transfer method, shear displacement method, pile-soil interface, pile-soil shear zone, settlement at pile head, analysis of bearing characteristics

中图分类号: 

  • TU 473
[1] 贺志军, 雷皓程, 夏张琦, 赵炼恒. 多层软土地基中单桩沉降与内力位移分析[J]. 岩土力学, 2020, 41(2): 655-666.
[2] 王忠凯, 徐光黎. 盾构掘进、离开施工阶段对地表变形的 影响范围及量化预测[J]. 岩土力学, 2020, 41(1): 285-294.
[3] 费 康, 戴 迪, 洪 伟, . 能量桩单桩工作特性简化分析方法[J]. 岩土力学, 2019, 40(1): 70-80.
[4] 万志辉,戴国亮,龚维明, . 超厚细砂地层大直径后压浆桩荷载传递计算与分析[J]. , 2018, 39(4): 1386-1394.
[5] 周立朵,孔纲强,彭怀风,顾红伟,朱 希,. 倾斜荷载下群桩承载特性理论分析[J]. , 2017, 38(9): 2647-2654.
[6] 周锦强,王树英,阳军生,傅金阳,. 基于Mindlin解分析隧道开挖对近邻桩基的影响[J]. , 2017, 38(4): 1075-1081.
[7] 陈昌富,赵湘龙,吴燕泉. 基于滑块位移法大桩帽刚性短桩荷载传递特性分析[J]. , 2017, 38(12): 3410-3418.
[8] 李 赛,汪 优,秦志浩,刘建华,. 基于统计损伤本构模型的改进桩-土接触面模型研究[J]. , 2016, 37(7): 1947-1955.
[9] 王向军. 基于试桩试验的桩侧注浆抗拔桩承载变形特性的荷载传递法[J]. , 2015, 36(S2): 321-326.
[10] 李永辉 ,王卫东 ,黄茂松 ,郭院成,. 超长灌注桩桩-土界面剪切试验研究[J]. , 2015, 36(7): 1981-1988.
[11] 胡永强 ,汤连生 ,李兆源,. 静压桩桩-土界面滑动摩擦机制研究[J]. , 2015, 36(5): 1288-1294.
[12] 贾 煜 ,宋福贵 ,王炳龙 ,杨龙才,. 基于改进荷载传递法计算降水引起的基桩沉降[J]. , 2015, 36(1): 68-74.
[13] 章 敏,王星华,杨光程,谢李钊. 循环荷载作用下单桩动力模型试验与桩−土界面特性研究[J]. , 2013, 34(4): 1037-1044.
[14] 王奎华 ,吕述晖 ,吴文兵 ,罗永健 ,武登辉 . 考虑应力扩散时桩端土性对单桩沉降影响分析方法[J]. , 2013, 34(3): 621-630.
[15] 熊巨华 ,王 远 ,刘 侃 ,孙 庆 . 隧道开挖对邻近单桩竖向受力特性影响[J]. , 2013, 34(2): 475-482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姚仰平,侯 伟. 土的基本力学特性及其弹塑性描述[J]. , 2009, 30(10): 2881 -2902 .
[2] 徐金明,羌培,张鹏飞. 粉质黏土图像的纹理特征分析[J]. , 2009, 30(10): 2903 -2907 .
[3] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[4] 石玉玲,门玉明,彭建兵,黄强兵,刘洪佳. 地裂缝对不同结构形式桥梁桥面的破坏试验研究[J]. , 2009, 30(10): 2917 -2922 .
[5] 夏栋舟,何益斌,刘建华. 土-结构动力相互作用体系阻尼及地震反应分析[J]. , 2009, 30(10): 2923 -2928 .
[6] 徐速超,冯夏庭,陈炳瑞. 矽卡岩单轴循环加卸载试验及声发射特性研究[J]. , 2009, 30(10): 2929 -2934 .
[7] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[8] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[9] 易 俊,姜永东,鲜学福,罗 云,张 瑜. 声场促进煤层气渗流的应力-温度-渗流压力场的流固动态耦合模型[J]. , 2009, 30(10): 2945 -2949 .
[10] 陶干强,杨仕教,任凤玉. 崩落矿岩散粒体流动性能试验研究[J]. , 2009, 30(10): 2950 -2954 .