岩土力学 ›› 2024, Vol. 45 ›› Issue (6): 1643-1650.doi: 10.16285/j.rsm.2023.1084

• 基础理论与实验研究 • 上一篇    下一篇

土工合成材料加筋土桥台极限承载力的离心载荷试验

赵崇熙1,徐超1, 2,王清明1,张胜3,李昊煜3   

  1. 1. 同济大学 地下建筑与工程系,上海 200092;2. 同济大学 岩土工程与地下结构教育部重点实验室,上海 200092; 3. 安徽省交通规划设计研究总院股份有限公司,安徽 合肥 230088
  • 收稿日期:2023-07-24 接受日期:2023-09-06 出版日期:2024-06-19 发布日期:2024-06-19
  • 作者简介:赵崇熙,男,1993年生,博士研究生,主要从事土工合成材料加筋土桥台设计及计算等方面的研究工作。E-mail: 791485082@qq.com
  • 基金资助:
    国家自然科学基金(No.41772284);科技部国家重点研发计划-政府间国际科技创新合作重点专项(No.2016YFE0105800)。

Centrifuge load test on ultimate bearing capacity of geosynthetic-reinforced soil abutment

ZHAO Chong-xi1, XU Chao1, 2, WANG Qing-ming1, ZHANG Sheng3, LI Hao-yu3   

  1. 1. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China; 2. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 3. Anhui Transport Consulting & Design Institute Co., Ltd., Hefei, Anhui 230088, China
  • Received:2023-07-24 Accepted:2023-09-06 Online:2024-06-19 Published:2024-06-19
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41772284) and the National Key Research and Development Program of China- Intergovernmental International Cooperation on Scientific and Technological Innovation (2016YFE0105800).

摘要: 土工合成材料加筋土(geosynthetic-reinforced soil,简称GRS)桥台是桥梁工程的承重结构,对其极限承载力还缺乏清晰的认识。在平面应变条件下开展了5组GRS桥台离心载荷试验,研究了筋材强度、承载区缩进距离和宽度对GRS桥台极限承载力以及破坏模式的影响。试验结果表明,筋材强度对GRS桥台极限承载力影响显著,采用高强度筋材的GRS桥台在加载过程中始终保持稳定。采用低强度筋材的GRS桥台的极限承载力随承载区缩进距离增加而增大,但其增长趋势出现衰减;随承载区域宽度增加,极限承载力降低;现行的半经验半理论公式显著低估了GRS桥台的极限承载力。从试验中和模型拆除后观察,GRS桥台破坏面均从承压区域后缘开始发育,随后向面层方向倾斜向下延伸至约1/2桥台高度处终止;但承载区缩进距离和宽度会影响破坏面的形态和位置。现有方法不能准确地预测GRS桥台破坏面底部终点的位置以及在承载区域下方的形态。增大承载区缩进距离和宽度使得各层筋材应变峰值的位置向桥台内部移动。桥台临空面的存在使得筋材的应变集中于靠近临空面一侧。

关键词: 土工合成材料加筋土, GRS桥台, 极限承载力, 离心试验, 破坏面

Abstract: Geosynthetic-reinforced soil (GRS) abutment is a load-bearing structure in bridge engineering, and its ultimate bearing capacity has not been recognized clearly. In this study, five GRS abutment centrifuge load tests were conducted under plane strain conditions. The effects of reinforcement strength, setback, and width of bearing area on the ultimate bearing capacity and failure mode of GRS abutments were investigated. The results show that the reinforcement strength significantly impacts the ultimate bearing capacity of GRS abutments. GRS abutments using high-strength reinforcement maintained stability during the loading process. It was observed that the ultimate bearing capacity of GRS abutments with low-strength reinforcement increased with the increase of setback, but its growth trend attenuated. As the bearing area width increased, the ultimate bearing capacity decreased. Compared with test results, the current semi-empirical and semi-theoretical formulas significantly underestimate the ultimate bearing capacity of GRS abutments. The observed failure surfaces all developed from the rear edge of the bearing area, extended downward at an angle to the facing, and terminated at approximately 0.5H (H is the GRS abutment height). The setback and width of bearing area affected the form and location of the failure surfaces, as well as the rupture of the reinforcement near the facing. Existing methods cannot accurately predict the bottom endpoint location and morphology below the bearing area of the failure surface. The increase in the setback and width of bearing area caused the peak strain location of each layer reinforcement to shift towards the interior of the abutment. The reinforcement strain concentrated near the free facing side of the abutment.

Key words: geosynthetic-reinforced soil, GRS abutment, ultimate bearing capacity, centrifuge test, failure surface

中图分类号: 

  • U446
[1] 颜然, 孔纲强, 于江华, . 砂土地基中钻进比对螺旋桩安装性能和抗拔承载性能的影响[J]. 岩土力学, 2024, 45(6): 1778-1788.
[2] 熊根, 付栋康, 朱斌, 赖莹, . 软黏土中吸力锚承载特性离心试验研究[J]. 岩土力学, 2024, 45(5): 1472-1480.
[3] 周志雄, 周凤玺, 曹小林, 汪镇, . 复合地基极限承载力的变分极限平衡法分析——竖向增强[J]. 岩土力学, 2024, 45(12): 3748-3754.
[4] 何杰, 郭端伟, 宋德新, 刘孟鑫, 张磊, 文奇峰, . 循环荷载下楔形劲芯水泥土复合桩工作特性试验研究[J]. 岩土力学, 2023, 44(5): 1353-1362.
[5] 黄炜, 简文彬, 杨坚, 豆红强, 罗金妹, . 多支盘锚杆的原型试验与荷载传递特征分析[J]. 岩土力学, 2023, 44(2): 520-530.
[6] 雷勇, 陈于斯, 谭豪, 李鹏甲, 刘运思, 于艺林, . 下伏空洞桥梁群桩桩端岩层极限承载力计算方法研究[J]. 岩土力学, 2023, 44(12): 3339-3348.
[7] 钟紫蓝, 韩春堂, 李锦强, 赵鑫, 缪惠全. 浅埋管道水平横向作用下砂土极限承载力研究[J]. 岩土力学, 2022, 43(S2): 95-103.
[8] 汪嘉钰, 刘润, 姬永红, 杨旭, 陈广思, 王晓磊, . 筒型基础水平向和抗倾承载力的极限分析上限解[J]. 岩土力学, 2022, 43(3): 777-788.
[9] 屈春来, 付迪, 刘世伟, 冷先伦, 李建贺, 孙熇远. 非均质成层边坡极限承载力上限分析[J]. 岩土力学, 2022, 43(10): 2923-2932.
[10] 贺琮栖, 魏玉峰, 王洋, 梁彭, 金磊磊, . 层状边坡倾倒变形多级折断面分布深度计算模型[J]. 岩土力学, 2022, 43(10): 2809-2818.
[11] 晏青, 赵均海, 张常光. 基于统一强度理论的临坡加筋地基极限承载力新解[J]. 岩土力学, 2021, 42(6): 1587-1600.
[12] 杨坚, 简文彬, 黄炜, 黄聪惠, 罗金妹, 李先忠, . 注浆支盘式锚杆拉拔试验及极限承载力计算[J]. 岩土力学, 2021, 42(4): 1126-1132.
[13] 冯衡, 高斐略, 刘观仕, 高彬, 肖飞, 曾二贤, . 风积沙地基金属装配式基础的真型试验研究[J]. 岩土力学, 2021, 42(12): 3328-3334.
[14] 林志, 胡伟, 赵璞, 陈秋南, 贺建清, 陈洁, 史旦达, . 砂土中平板圆锚倾斜拉拔承载特性模型试验研究[J]. 岩土力学, 2021, 42(11): 3059-3068.
[15] 李超, 李涛, 荆国业, 肖玉华. 竖井掘进机撑靴井壁土体极限承载力研究[J]. 岩土力学, 2020, 41(S1): 227-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!