岩土力学 ›› 2024, Vol. 45 ›› Issue (7): 1939-1956.doi: 10.16285/j.rsm.2023.1326

• 基础理论与实验研究 • 上一篇    下一篇

多孔介质低渗测试气体周期振荡法理论研究

王威1, 2, 3,陈卫忠4,杨典森5,杨光华1, 2,周小文3, 袁明道1,史永胜1,刘宜杰1   

  1. 1.广东省水利水电科学研究院,广东 广州 510610;2.广东省岩土工程技术研究中心,广东 广州 510640; 3.华南理工大学 土木与交通学院,广东 广州 510640;4.中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,湖北 武汉 430071; 5.武汉大学 土木建筑工程学院,湖北 武汉 430072
  • 收稿日期:2023-09-06 接受日期:2024-01-14 出版日期:2024-07-10 发布日期:2024-07-19
  • 通讯作者: 杨典森,男,1978年生,博士,教授,博士生导师,主要从事岩土介质多场耦合多尺度效应方面的研究工作。E-mail: dsyang@whu.edu.cn
  • 作者简介:王威,男,1990年生,博士后,主要从事多孔介质渗透测试和边坡工程稳定计算方面的研究工作。E-mail: growup_wei@qq.com
  • 基金资助:
    国家自然科学基金(No. 52108366);中国博士后科学基金(No. 2020M672557);广东省水利科技创新项目(No.2022-04)

Theoretical study of gas periodic oscillation method for low permeability testing in porous media

WANG Wei1, 2, 3, CHEN Wei-zhong4, YANG Dian-sen5, YANG Guang-hua1, 2, ZHOU Xiao-wen3, YUAN Ming-dao1, SHI Yong-sheng1, LIU Yi-jie1   

  1. 1. Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, Guangdong 510610, China; 2. The Geotechnical Engineering Technology Center of Guangdong Province, Guangzhou, Guangdong 510640, China; 3. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, Guangdong 510640, China; 4. State Key Laboratory of Geomechanincs and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei 430071, China; 5. School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
  • Received:2023-09-06 Accepted:2024-01-14 Online:2024-07-10 Published:2024-07-19
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (52108366), the China Postdoctoral Science Foundation (2020M672557) and the Science and Technology Innovation Program from Water Resources of Guangdong Province (2022-04).

摘要: 目前,多孔介质低渗测试主要采用高精度气体稳态法和气体脉冲衰减法,缺少对气体周期振荡法的深入探讨和分析。基于气体周期振荡法基本原理和试验方法,提出了3种基于不同控制方式模拟生成周期波气压边界条件的方法,以及在试样上游和下游分别设置1个体积可调的气体储存容器的试验设备方案。基于孔隙流体介质的讨论,将Fischer等提出的以不可压缩流体为渗流介质的周期法理论解,推广到以可压缩流体为渗流介质的情况,扩大了周期法理论解的适用范围,并讨论了各参数之间的物理意义及其联系。基于气体周期振荡法理论解,进行了2个特例分析,优化了理论解中复杂分项的处理。通过一系列正交对照计算案例,对比了气体周期振荡法理论解和数值解的计算结果,讨论了渗透率、孔隙率、下游容器体积、试样直径和长度等对试验过程的影响,验证了理论解的准确性和可靠性,并对理论解的不足进行了说明,在此基础上,给出了气体周期振荡法试验的优化设计策略。

关键词: 气体周期振荡法, 渗透率, 储存系数, 理论研究

Abstract: The high-precision gas steady-state method and the gas pulse decay method are widely used in the permeability measurement of tight porous media. However there is a lack of in-depth discussion and analysis of the gas periodic oscillation method (POM). The basic principle of POM is introduced, and three practical methods for simulating periodic pressure waves are proposed. Additionally, an experimental equipment scheme is recommended, which includes two adjustable gas storage containers on each side of the specimen. The theory proposed by Fischer regarding the periodic oscillation method is expanded in this study to include the scenario where the seepage medium is a compressible fluid, as opposed to only considering incompressible fluids. This extension allows for a wider range of applications for the periodic oscillation method. Additionally, the study examines the physical significance of this method and analyzes the relationships between different parameters involved. Based on the generic theoretical solution of POM, two special cases are analyzed and the treatment of some complex sub-terms is optimized. The calculation results of the theoretical and numerical solutions of POM are compared through a series of orthogonal cases, and the effects of permeability, porosity, downstream container volume, specimen diameter and length on the experimental process are discussed respectively. The numerical solutions are used to verify the accuracies and stabilities of the theoretical solutions, and to illustrate some shortages of the theoretical solutions. Based on the case study, a better design strategy of POM experiment is given.

Key words: gas periodic oscillation method, permeability, storage coefficient, theoretical study

中图分类号: 

  • TE 319
[1] 黄楠, 朱斌, 王路君, . 考虑水合物孔隙赋存模式演化的含水合物沉积物渗透率模型[J]. 岩土力学, 2024, 45(8): 2387-2396.
[2] 赵艳, 杨柳, 奚茹茹, 耿振坤, 张谦, 马雄德, . 基于核磁共振和磁共振成像的低渗透岩芯CO2-H2O两相驱替特征研究[J]. 岩土力学, 2023, 44(6): 1636-1644.
[3] 甘磊, 刘玉, 张宗亮, 沈振中, 马洪影, . 岩体裂隙粗糙度表征及其对裂隙渗流特性的影响[J]. 岩土力学, 2023, 44(6): 1585-1592.
[4] KOZHEVNIKOV V. Evgenii, TURBAKOV S. Mikhail, RIABOKON P. Evgenii, GLADKIKH A. Evgeniy, POPLYGIN V. Vladimir, GUZEV A. Mikhail, . 基于现场试井数据和岩心驱替试验的采油初期渗透率演化规律[J]. 岩土力学, 2023, 44(3): 834-842.
[5] 蒋长宝, 余塘, 魏文辉, 段敏克, 杨阳, 魏财, . 加卸载应力作用下煤岩渗透率演化模型研究[J]. 岩土力学, 2022, 43(S1): 13-22.
[6] 毛彦军, 陈曦, 范超男, 葛少成, 李文璞, . 基于CT三维重建的注水煤岩体裂隙扩展规律研究[J]. 岩土力学, 2022, 43(6): 1717-1726.
[7] 田佳丽, 王惠民, 刘星星, 向雷, 盛金昌, 罗玉龙, 詹美礼. 考虑不同尺度孔隙压缩敏感性的 砂岩渗透特性研究[J]. 岩土力学, 2022, 43(2): 405-415.
[8] 张磊, 田苗苗, 曾世攀, 郭鲁成, 卢硕, 唐俊, . 液氮溶浸对不同煤阶含水煤样渗流特性的影响[J]. 岩土力学, 2022, 43(11): 3015-3026.
[9] 邓申缘, 姜清辉, 商开卫, 井向阳, 熊峰, . 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学, 2021, 42(6): 1601-1611.
[10] 张宏学, 刘卫群, . 非平衡解吸状态下页岩气储层渗透率演化机制[J]. 岩土力学, 2021, 42(10): 2696-2704.
[11] 李康, 王威, 杨典森, 陈卫忠, 亓宪寅, 谭彩. 周期振荡法在低渗透测量中的应用研究[J]. 岩土力学, 2020, 41(3): 1086-1094.
[12] 杨福见, 胡大伟, 田振保, 周辉, 卢景景, 罗宇杰, 桂树强, . 高静水压力压实作用下疏松砂岩渗透 特性演化及其机制[J]. 岩土力学, 2020, 41(1): 67-77.
[13] 丁长栋, 张杨, 杨向同, 胡大伟, 周辉, 卢景景, . 致密砂岩高围压和高孔隙水压下渗透率 演化规律及微观机制[J]. 岩土力学, 2019, 40(9): 3300-3308.
[14] 王辰霖, 张小东, 杜志刚, . 循环加卸载作用下预制裂隙煤样渗透性试验研究[J]. 岩土力学, 2019, 40(6): 2140-2153.
[15] 刘 健, 陈 亮, 王春萍, 马利科, 王 驹. 一种非稳态气体渗流条件下岩石渗透特性 参数计算方法及应用[J]. 岩土力学, 2019, 40(5): 1721-1730.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!