岩土力学 ›› 2024, Vol. 45 ›› Issue (12): 3791-3801.doi: 10.16285/j.rsm.2024.0256

• 数值分析 • 上一篇    下一篇

基于LightGBM-Informer的盾构隧道管片上浮长时间序列预测模型

真嘉捷,赖丰文,黄明,李爽,许凯   

  1. 福州大学 土木工程学院,福建 福州 350108
  • 收稿日期:2024-03-04 接受日期:2024-04-25 出版日期:2024-12-09 发布日期:2024-12-05
  • 通讯作者: 黄明,男,1983年生,博士,教授,博士生导师,主要从事岩土力学与工程方面的教学与研究工作。E-mail: huangming05@fzu.edu.cn
  • 作者简介:真嘉捷,男,1996年生,博士研究生,主要从事盾构法隧道智能化掘进方面的研究。E-mail: Ternuraa148@163.com
  • 基金资助:
    国家自然科学基金(No.41972276,No.52408356);福建省自然科学基金(No.2020J06013);福建省“雏鹰计划”青年拔尖人才项目(No.00387088)。

Long sequence time series model to predict uplift of segmental lining in shield tunnel based on LightGBM-Informer

ZHEN Jia-jie, LAI Feng-wen, HUANG Ming, LI Shuang, XU Kai   

  1. College of Civil Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
  • Received:2024-03-04 Accepted:2024-04-25 Online:2024-12-09 Published:2024-12-05
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (41972276, 52408356), the Natural Science Foundation of Fujian Province (2020J06013) and the “Foal Eagle Program” Youth Top-notch Talent Project of Fujian Province, China (00387088).

摘要: 基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影响,结合Boruta算法,确定模型输入特征;利用小波变换滤波器、完备自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法消除时间序列数据噪声,构建了一种基于LightBGM-Informer的盾构隧道施工期管片上浮预测模型。通过南京和厦门地区某地铁盾构隧道监测数据,验证了所提模型的准确性和适用性。结果表明,所提模型预测精度较循环神经网络(recurrent neural network,RNN)、长短时记忆网络(long short-term memory,LSTM)、门控循环单元(gated recurrent unit,GRU)、Transformer等模型有所提升,且在地质条件不同的数据集上具有良好的泛化性;随着预测序列长度的增加,该模型的性能优势更突出,可准确预测盾构刀盘前方1~2环未施工管片的上浮值。基于沙普利加和解释(Shapley additive explanations,SHAP)方法的特征重要性分析指出,土舱压力及盾头、盾尾垂直位移对管片上浮影响显著。所提模型可为复杂环境下富水地层盾构隧道管片施工智能化控制提供理论指导。

关键词: 盾构隧道, 管片上浮, 长时间序列预测问题, Informer模型, SHAP方法

Abstract: Utilizing machine learning to predict the uplift of shield tunnel linings ahead of the cutterhead during construction enables timely adjustments of control parameters, mitigating lining uplift issues. Nevertheless, existing models exhibit limited performance in long sequence time-series forecasting (LSTF) and face challenges in accurately predicting the uplift of multiple lining rings ahead of the shield cutterhead. Considering the impact of shield control, attitude parameters, and geological condition, and utilizing the Boruta algorithm to determine model input features, a shield tunnel segment uplift prediction model based on LightGBM-Informer was proposed. This model incorporates a wavelet transform filter and a complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method to eliminate noise in time series data. The accuracy and applicability of the proposed model were validated using the monitoring data from subway shield tunnel projects in Nanjing and Xiamen. The results demonstrate that the model exhibits enhanced prediction accuracy in comparison to other models, including recurrent neural network (RNN), long short-term memory (LSTM), gated recurrent unit (GRU), and Transformer. Additionally, it demonstrates robust generalization capabilities across diverse geological condition datasets. As the length of the prediction sequence increases, the performance advantages of the model become more pronounced, accurately predicting the uplift of 1−2 rings of linings ahead of the shield cutterhead. Feature importance analysis based on Shapley additive explanations (SHAP) method indicates that earth chamber pressure and vertical displacement at the shield head and tail have significant impacts on lining uplift. The model provides theoretical guidance for intelligent control of shield tunnel lining construction in complex, water-rich environments.

Key words: shield tunnel, lining uplift, long sequence time-series forecasting problem, Informer model, Shapley additive explanations (SHAP) method

中图分类号: 

  • TU457
[1] 黄明华, 钟煜轩, 陆锦斌, 王克平. 基于非连续地基梁模型的基坑开挖诱发下卧盾构隧道变形分析[J]. 岩土力学, 2025, 46(2): 492-504.
[2] 王小刚, 杨建平, 陈卫忠, 李慧, . 盾构隧道结构响应特征及接缝刚度分析[J]. 岩土力学, 2024, 45(S1): 485-495.
[3] 黄大维, 刘家璇, 谭满生, 邓翔浩, 黄永亮, 翁友华, 陈升平, . 盾构隧道底部注浆抬升模拟试验研究[J]. 岩土力学, 2024, 45(S1): 371-381.
[4] 张治国, 沃巍, 朱正国, 韩凯航, 孙苗苗, . 考虑衬砌截面协调变形约束的既有隧道受盾构下穿施工影响的Fourier能量变分解[J]. 岩土力学, 2024, 45(5): 1397-1411.
[5] 张治国, 罗杰, 朱正国, PAN Y T, 孙苗苗, . 基于极限分析上限法的地震作用下分层地基 盾构隧道开挖面稳定性研究[J]. 岩土力学, 2024, 45(4): 1201-1213.
[6] 潘秋景, 吴洪涛, 张子龙, 宋克志, . 基于多域物理信息神经网络的复合地层隧道掘进地表沉降预测[J]. 岩土力学, 2024, 45(2): 539-551.
[7] 李文博, 甘晓露, 刘念武, 吴昊, 谌珊珊. 基于短梁−弹簧模型的盾构隧道施工期上浮变形计算方法[J]. 岩土力学, 2024, 45(12): 3755-3767.
[8] 黄继辉, 秦世康, 赵昱, 陈景煦, 张浩, . 压气法盾构仓内气压与围岩气−液两相流相互作用模型研究[J]. 岩土力学, 2024, 45(12): 3555-3565.
[9] 任璐瑶, 吴镇杰, 黄啟超, 关振长. 考虑轴力影响的盾构隧道纵向地震响应解析[J]. 岩土力学, 2024, 45(10): 2971-2980.
[10] 钟小春, 黄思远, 槐荣国, 朱诚, 胡一康, 陈旭泉, . 基于浆液浮力试验的盾尾管片纵向上浮特征研究[J]. 岩土力学, 2023, 44(6): 1615-1624.
[11] 张治国, 叶铜, 朱正国, PAN Y T, 吴钟腾, . 波浪作用下含气海床内盾构隧道水力及位移响应分析[J]. 岩土力学, 2023, 44(6): 1557-1574.
[12] 王祖贤, 施成华, 龚琛杰, 曹成勇, 彭铸, 孙影杰, . 考虑横向性能的盾构隧道纵向非线性等效抗弯刚度计算模型[J]. 岩土力学, 2023, 44(5): 1295-1308.
[13] 吴宏, 叶治, 张宇亭, 刘华北, . 穿越不同密实度饱和砂土地层的盾构隧道地震响应三维数值分析[J]. 岩土力学, 2023, 44(4): 1204-1216.
[14] 刘勇, 周怡晟, 索晓明, 樊浩博, 曹毅泽, 杜志田, . 盾构下穿高铁路基变形规律模型试验研究[J]. 岩土力学, 2023, 44(4): 941-951.
[15] 张治国, 罗杰, 朱正国, PAN Y T, 孙苗苗, . 强降雨影响下盾构隧道开挖面稳定性的三维对数螺旋模型上限解[J]. 岩土力学, 2023, 44(12): 3587-3601.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!