›› 2011, Vol. 32 ›› Issue (6): 1819-1823.

• 岩土工程研究 • 上一篇    下一篇

夯扩桩加固湿陷性黄土地基机理研究

聂庆科1, 2,梁金国1,韩立君1,李华伟1, 2   

  1. 1. 河北建设勘察研究院有限公司,石家庄 050031;2. 河北省岩土工程技术研究中心,石家庄 050031
  • 收稿日期:2010-01-15 出版日期:2011-06-10 发布日期:2011-06-21
  • 作者简介:聂庆科,男,1965年生,教授级高工,主要从事岩土工程设计,施工与理论分析研究

Study of improvement mechanism of compaction-widening piles by tamping in collapsible loess foundation

NIE Qing-ke1, 2, LIANG Jin-guo1, HAN Li-jun1, LI Hua-wei1, 2   

  1. 1. Hebei Research Institute of Construction and Geotechnical Investigation Co. Ltd., Shijiazhuang 050031, China; 2. Research Center of Geotechnical Engineering Technology of Hebei Province. Shijiazhuang 050031, China
  • Received:2010-01-15 Online:2011-06-10 Published:2011-06-21

摘要: 通过现场试验对夯扩挤密桩加固湿陷性黄土地基的机理进行研究。利用现场取得的加固前的原状土样和加固后的土样进行室内对比试验,测定加固前、后桩间土的物理力学性质指标(如孔隙比、湿陷系数和密实系数等)的变化。根据这些结果,分析了夯扩挤密桩加固湿陷性黄土地基的效果和夯扩挤密桩在水平方向和深度方向的挤密程度和影响范围。最后讨论了工程实践中夯扩挤密桩设计应采取的合理的桩间距

关键词: 夯扩挤密桩, 湿陷性黄土, 加固机理, 湿陷系数, 桩间距

Abstract: According to a practical case of composite foundation in collapsible loess foundation, the squeezing effects on compaction pile by tamping are studied. In field test, the undisturbed samples before treatment and the samples after treatment are first obtained; and then the physical parameters (e.g. void ratio, coefficient of collapsibility, coefficient of compactness, etc) are studied. Using the test results, the squeezing effects of the soil between piles with loading variation are discussed. Besides, the affecting scopes in horizontal and vertical directions are also analyzed. Finally, the reasonable spacing between piles which should be used in practical applications is discussed.

Key words: compaction-widening pile, collapsible loess, improvement mechanism, coefficient of collapsibility, spacing between piles

中图分类号: 

  • TU473
[1] 谢芸菲, 迟世春, 周雄雄, . 复杂环境中大规模桩筏基础的优化设计方法研究[J]. 岩土力学, 2019, 40(S1): 486-493.
[2] 朱彦鹏, 杜晓启, 杨校辉, 栗慧王君, . 挤密桩处理大厚度自重湿陷性黄土地区综合 管廊地基及其工后浸水试验研究[J]. 岩土力学, 2019, 40(8): 2914-2924.
[3] 王铁行, 金 鑫, 罗 扬, 张松林. 考虑卸荷作用的黄土湿陷性评价方法研究[J]. 岩土力学, 2019, 40(4): 1281-1290.
[4] 张玲, 陈金海, 赵明华. 考虑土拱效应的悬臂式抗滑桩最大桩间距确定[J]. 岩土力学, 2019, 40(11): 4497-4505.
[5] 丑亚玲,郏书胜,张庆海,曹 伟,盛 煜,. 考虑结构性的冻融作用对黄土湿陷系数的影响[J]. , 2018, 39(8): 2715-2722.
[6] 储召军,石少卿,孙建虎,李 季,崔廉明,. 基于模型试验的桩间距对组合式钢管抗滑桩抗滑效果的影响分析[J]. , 2018, 39(3): 848-853.
[7] 王 娇,邵生俊,陈 攀,. 非饱和重塑黄土的土水特性及压缩屈服与湿陷性的研究[J]. , 2017, 38(S2): 217-222.
[8] 安 鹏,张爱军,邢义川,倪万魁,张 博,. 伊犁深厚湿陷性黄土浸水入渗及沉降变形特征分析[J]. , 2017, 38(2): 557-564.
[9] 牛亚强 ,王 旭 ,郑 静 ,蒋代军 ,刘德仁 ,蒋鹏程 , . 侧向约束防渗路基新结构防渗效果试验研究[J]. , 2015, 36(S2): 252-258.
[10] 黄雪峰 ,杨校辉 ,殷 鹤 ,刘自龙 ,周俊鹏,. 湿陷性黄土场地湿陷下限深度与桩基中性点位置关系研究[J]. , 2015, 36(S2): 296-302.
[11] 梅 源 ,胡长明 ,魏弋峰 ,张文萃 ,袁一力 ,王雪艳 , . Q2、Q3黄土深堑中高填方地基变形规律离心模型试验研究[J]. , 2015, 36(12): 3473-3481.
[12] 王端端,周志军,吕彦达,魏 进. 湿陷性黄土中成孔方式对桩基承载力影响试验研究[J]. , 2015, 36(10): 2927-2933.
[13] 肖世国 ,程富强,. 再论悬臂式抗滑桩合理桩间距的计算方法[J]. , 2015, 36(1): 111-116.
[14] 姚志华 ,黄雪峰 , 陈正汉 ,方祥位 ,苗强强 ,张江水,. 关于黄土湿陷性评价和剩余湿陷量的新认识[J]. , 2014, 35(4): 998-1006.
[15] 黄雪峰 ,杨校辉,. 湿陷性黄土现场浸水试验研究进展[J]. , 2013, 34(S2): 222-228.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 吴 琼,唐辉明,王亮清,林志红. 库水位升降联合降雨作用下库岸边坡中的浸润线研究[J]. , 2009, 30(10): 3025 -3031 .
[2] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[3] 陈红江,李夕兵,刘爱华. 矿井突水水源判别的多组逐步Bayes判别方法研究[J]. , 2009, 30(12): 3655 -3659 .
[4] 和法国,谌文武,韩文峰,张景科. 高分子材料SH固沙性能与微结构相关性研究[J]. , 2009, 30(12): 3803 -3807 .
[5] 雷永生. 西安地铁二号线下穿城墙及钟楼保护措施研究[J]. , 2010, 31(1): 223 -228 .
[6] 尚守平,岁小溪,周志锦,刘方成,熊 伟. 橡胶颗粒-砂混合物动剪切模量的试验研究[J]. , 2010, 31(2): 377 -381 .
[7] 肖 忠,王元战,及春宁,黄泰坤,单 旭. 波浪作用下加固软基上大圆筒结构稳定性分析[J]. , 2010, 31(8): 2648 -2654 .
[8] 柴 波,殷坤龙,陈丽霞,李远耀. 岩体结构控制下的斜坡变形特征[J]. , 2009, 30(2): 521 -525 .
[9] 赵洪波,茹忠亮,张士科. SVM在地下工程可靠性分析中的应用[J]. , 2009, 30(2): 526 -530 .
[10] 徐 扬,高 谦,李 欣,李俊华,贾云喜. 土石混合体渗透性现场试坑试验研究[J]. , 2009, 30(3): 855 -858 .