›› 2018, Vol. 39 ›› Issue (9): 3253-3260.doi: 10.16285/j.rsm.2016.2796

• 基础理论与实验研究 • 上一篇    下一篇

渗透压–应力耦合作用下页岩渗透性试验

左宇军1,2,3,4,孙文吉斌1,2,3,4,邬忠虎5,许云飞1,2,3,4   

  1. 1. 贵州大学 矿业学院,贵州 贵阳 550025;2. 贵州大学 贵州省非金属矿产资源综合利用重点实验室,贵州 贵阳 550025; 3. 贵州大学 贵州省优势矿产资源高效利用工程实验室,贵州 贵阳 550025;4. 贵州大学 复杂地质矿山开采安全技术工程中心,贵州 贵阳 550025;5. 贵州大学 土木工程学院,贵州 贵阳 550025
  • 收稿日期:2016-12-01 出版日期:2018-09-11 发布日期:2018-10-08
  • 作者简介:左宇军,男,1965年生,博士后,教授,主要从事岩石力学与采矿工程方面的教学与研究工作。
  • 基金资助:

    国家自然科学基金重点项目(No. 51574093,No. 51774101);贵州省重大应用基础研究项目(黔科合JZ字[2014]2005);贵州省高层次创新型人才培养项目(黔科合人才(2016)4011号);贵州大学人才引进项目(贵大人基合字[2017]63号)。

Experiment on permeability of shale under osmotic pressure and stress coupling

ZUO Yu-jun1, 2, 3, 4, SUN Wen-ji-bin1, 2, 3, 4, WU Zhong-hu5, XU Yun-fei1, 2, 3, 4   

  1. 1. Mining College, Guizhou University, Guiyang, Guizhou 550025, China; 2. Guizhou Key Laboratory of Comprehensive Utilization of Nonmetallic Mineral Resources, Guizhou University, Guiyang, Guizhou 550025, China; 3. Engineering Laboratory for Efficient Utilization of Superior Mineral Resources in Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China; 4. Engineering Center for Safe Mining Technology under Complex Geologic Condition, Guizhou University Guiyang, Guizhou 550025, China; 5. College of Civil Engineering, Guizhou University, Guiyang, Guizhou 550025, China;
  • Received:2016-12-01 Online:2018-09-11 Published:2018-10-08
  • Supported by:

    This work was supported by the Key Program of the National Natural Science Foundation of China (51574093, 51774101), the Major Application Foundation Research Project of Guizhou Province(JZ2014-2005), the High Level Innovative Talents Training Project of Guizhou Province(2016-4011) and the Talent Introduction Project of Guizhou University(2017-63).

摘要: 为了探究渗透压-应力耦合作用下页岩的渗透性,选用岩石伺服三轴试验系统,在不同渗透压差和围压条件下对页岩进行全应力、应变渗透性试验。分析页岩不同变形阶段与渗透率的关系,探讨页岩破坏过程中形成的局部压缩带与渗透性的关联性。试验结果表明:相同渗透压差、不同围压下,初始渗透率随着围压增大而呈不同程度的减小,峰值强度随着围压增加而增大;相同围压、不同渗透压差下,试样渗透率随着渗透压差增加而呈不同程度的增大,但是峰值强度有一定程度的降低;试验结果表明,页岩出现了局部压缩带的现象,压缩带的出现对渗透率增加有着抑制的作用,它的出现并不是页岩脆-延转换临界点出现的特征,而是孔裂隙萌生、扩展并开始软化的标志性特征;页岩试样在高围压条件下出现硬化现象,在低围压条件下的页岩试样内部孔裂隙渗流网络的形成早于高围压下硬化的页岩试样,破坏模式以高角度剪切破坏为主。研究页岩不同应力环境下的渗透性,对揭示页岩气开发过程中页岩的渗流机制具有实际意义。

关键词: 岩石力学, 页岩, 渗透压-应力耦合, 渗透性, 压缩带

Abstract: To understand the permeability of shale under osmotic pressure and stress coupling, a servo-controlled triaxial rock testing system was employed to determine the complete strain-stress curves and permeability of shale under different confining pressures and osmotic pressures. The relationships between the deformation stage and permeability of shale samples were analyzed. The relationship between the compression zone and the permeability in the process of shale destruction was discussed. The results show that under different confining pressures, the initial permeability decreases with the increase of confining pressure, and the peak intensity increases with the increase of confining pressure. Under the same confining pressure, the permeability of the samples increases with the increase of the osmotic pressure, but the peak strength decreases to a certain extent. It is found that there is a localised compression zone in the shale, and the compression zone appears to inhibit the increase of permeability. The appearance of the compression zone is not the characteristic of the brittle to the ductile transition critical point, but the characteristics of the initiation, propagation and softening of pores. The shale samples appear hardening under high confining pressure. Under the low confining pressure, the formation of the fracture network in the shale is earlier than the samples under high confining pressure, and the failure mode is mainly dominated by the high-angle shear failure. This study on the permeability of shale under different stress conditions is significant to reveal the percolation mechanism of the process of shale gas development.

Key words: rock mechanics, shale, osmotic pressure and stress coupling, permeability, compression zone

中图分类号: 

  • TU 452

[1] 卞康, 陈彦安, 刘建, 崔德山, 李一冉, 梁文迪, 韩啸. 不同吸水时间下页岩卸荷破坏特征的 颗粒离散元研究[J]. 岩土力学, 2020, 41(S1): 355-367.
[2] 黄巍, 肖维民, 田梦婷, 张林浩, . 不规则柱状节理岩体力学特性模型试验研究[J]. 岩土力学, 2020, 41(7): 2349-2359.
[3] 蒋长宝, 魏 财, 段敏克, 陈昱霏, 余塘, 李政科, . 饱水和天然状态下页岩滞后效应及阻尼特性研究[J]. 岩土力学, 2020, 41(6): 1799-1808.
[4] 李华, 李同录, 江睿君, 范江文. 基于滤纸法的非饱和渗透性曲线测试[J]. 岩土力学, 2020, 41(3): 895-904.
[5] 金俊超, 佘成学, 尚朋阳. 基于Hoek-Brown准则的岩石应变软化模型研究[J]. 岩土力学, 2020, 41(3): 939-951.
[6] 马秋峰, 秦跃平, 周天白, 杨小彬. 岩石剪切断裂面接触算法的开发与应用[J]. 岩土力学, 2020, 41(3): 1074-1085.
[7] 张艳博, 孙林, 姚旭龙, 梁鹏, 田宝柱, 刘祥鑫, . 花岗岩破裂过程声发射关键信号时 频特征试验研究[J]. 岩土力学, 2020, 41(1): 157-165.
[8] 修乃岭, 严玉忠, 胥云, 王欣, 管保山, 王臻, 梁天成, 付海峰, 田国荣, 蒙传幼, . 基于非达西流动的自支撑剪切裂缝导流 能力实验研究[J]. 岩土力学, 2019, 40(S1): 135-142.
[9] 李玲, 刘金泉, 刘造保, 刘桃根, 王伟, 邵建富, . 砂-黏土混合物高压压实性能试验研究[J]. 岩土力学, 2019, 40(9): 3502-3514.
[10] 沈泰宇, 汪时机, 薛乐, 李贤, 何丙辉, . 微生物沉积碳酸钙固化砂质黏性紫色土试验研究[J]. 岩土力学, 2019, 40(8): 3115-3124.
[11] 大久保诚介, 汤 杨, 许江, 彭守建, 陈灿灿, 严召松, . 3D-DIC系统在岩石力学试验中的应用[J]. 岩土力学, 2019, 40(8): 3263-3273.
[12] 张艳博, 梁鹏, 孙林, 田宝柱, 姚旭龙, 刘祥鑫, . 单轴压缩下饱水花岗岩破裂过程声发射 频谱特征试验研究[J]. 岩土力学, 2019, 40(7): 2497-2506.
[13] 马秋峰, 秦跃平, 周天白, 杨小彬. 多孔隙岩石加卸载力学特性及本构模型研究[J]. 岩土力学, 2019, 40(7): 2673-2685.
[14] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[15] 田军, 卢高明, 冯夏庭, 李元辉, 张希巍. 主要造岩矿物微波敏感性试验研究[J]. 岩土力学, 2019, 40(6): 2066-2074.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!