岩土力学 ›› 2019, Vol. 40 ›› Issue (5): 1869-1880.doi: 10.16285/j.rsm.2018.0045
杨宗佶1,蔡 焕1, 2,雷小芹1,王礼勇1, 2,丁朋朋1, 2,乔建平1
YANG Zong-ji1, CAI Huan1, 2, LEI Xiao-qin1, WANG Li-yong1, 2, DING Peng-peng1, 2, QIAO Jian-ping1
摘要: 降雨滑坡的水-力耦合过程和机制研究是开展准确预测预报的基础和前提。选取典型滑坡模型,采用足尺人工降雨模型试验模拟了典型砾石土滑坡堆积体破坏过程,并采用Brooks-Corey(BC)和Van Genuchten(VG)模型分别建立了降雨入渗吸湿过程的土-水特征曲线,再通过一维非饱和无限边坡稳定性分析模型对滑坡开展应力状态和稳定性分析,揭示了斜坡破坏过程是优先流和基质流的双渗流场共同作用的结果,而VG模型适用于吸湿条件下宽级配砾石土优先流的土-水特征曲线的重构;稳定性计算和试验过程的对比分析表明,试验中斜坡的变形破坏过程中观测到的含水率、基质吸力和地表倾斜角度的变化过程与计算的吸力应力、稳定系数的演进过程有显著的对应关系。通过试验还揭示了非饱和滑坡堆积体渗流潜蚀现象,定量分析了细颗粒迁移程度。基于物理模型试验,揭示了降雨激发条件下滑坡堆积体形成优先流作用的土-水特征曲线和变形破坏的水力耦合过程,可为地震滑坡堆积体非饱和失稳的预测预警提供参考和基础。
中图分类号:
[1] | 杨志浩, 岳祖润, 冯怀平, . 非饱和粉土路基内水分迁移规律试验研究[J]. 岩土力学, 2020, 41(7): 2241-2251. |
[2] | 陈昊, 胡小荣. 非饱和土三剪强度准则及验证[J]. 岩土力学, 2020, 41(7): 2380-2388. |
[3] | 文伟, 赖远明, 尤哲敏, 李积锋, . 基于Pitzer离子模型的盐渍非饱和土孔隙 相对湿度计算[J]. 岩土力学, 2020, 41(6): 1944-1952. |
[4] | 陶帅, 董毅, 韦昌富, . 环境湿度可控的土体小应变刚度试验系统[J]. 岩土力学, 2020, 41(6): 2132-2142. |
[5] | 柳鸿博, 周凤玺, 岳国栋, 郝磊超. 非饱和土中热弹性波的传播特性分析[J]. 岩土力学, 2020, 41(5): 1613-1624. |
[6] | 薛阳, 吴益平, 苗发盛, 李麟玮, 廖康, 张龙飞. 库水升降条件下考虑饱和渗透系数空间变异性的白水河滑坡渗流变形分析[J]. 岩土力学, 2020, 41(5): 1709-1720. |
[7] | 孙银磊, 汤连生, 刘洁, . 非饱和土微观结构与粒间吸力的研究进展[J]. 岩土力学, 2020, 41(4): 1095-1122. |
[8] | 李潇旋, 李涛, 李舰, 张涛. 循环荷载下非饱和结构性黏土的弹塑性双面模型[J]. 岩土力学, 2020, 41(4): 1153-1160. |
[9] | 李华, 李同录, 江睿君, 范江文. 基于滤纸法的非饱和渗透性曲线测试[J]. 岩土力学, 2020, 41(3): 895-904. |
[10] | 陈贺, 张玉芳, 张新民, 魏少伟, . 高压注浆钢花管微型桩抗滑特性 足尺模型试验研究[J]. 岩土力学, 2020, 41(2): 428-436. |
[11] | 程涛, 晏克勤, 胡仁杰, 郑俊杰, 张欢, 陈合龙, 江志杰, 刘强, . 非饱和土拟二维平面应变固结问题的解析计算方法[J]. 岩土力学, 2020, 41(2): 453-460. |
[12] | 方瑾瑾, 冯以鑫, 王立平, 余永强, . 真三轴条件下非饱和黄土的有效应力屈服特性[J]. 岩土力学, 2020, 41(2): 492-500. |
[13] | 邓子千, 陈嘉帅, 王建伟, 刘小文, . 基于SFG模型的统一屈服面本构模型与试验研究[J]. 岩土力学, 2020, 41(2): 527-534. |
[14] | 李潇旋, 李涛, 彭丽云, . 控制吸力循环荷载下非饱和黏性土 的弹塑性双面模型[J]. 岩土力学, 2020, 41(2): 552-560. |
[15] | 程昊, 唐辉明, 吴琼, 雷国平. 一种考虑水力滞回效应的非饱和土弹塑性扩展 剑桥本构模型显式算法有限元实现[J]. 岩土力学, 2020, 41(2): 676-686. |
|