岩土力学 ›› 2020, Vol. 41 ›› Issue (5): 1761-1769.doi: 10.16285/j.rsm.2019.0972

• 数值分析 • 上一篇    下一篇

花岗岩粗糙单裂隙对流换热特性的数值模拟

高雪峰1,张延军1,黄奕斌1,赵熠1,倪金2,马静晨3   

  1. 1. 吉林大学 建设工程学院,吉林 长春 130012;2. 中国地质调查局沈阳地质调查中心,辽宁 沈阳 110034; 3. 北京市地质工程勘察院,北京 100048
  • 收稿日期:2019-05-31 修回日期:2019-10-17 出版日期:2020-05-11 发布日期:2020-07-08
  • 通讯作者: 张延军,男,1968年生,博士,教授,博士生导师,主要从事优化储层改造、统计微震事件及THCM多场耦合。E-mail: zhangyanj@jlu.edu.cn E-mail:gaoxf18@mails.jlu.edu.cn
  • 作者简介:高雪峰,男,1995年生,硕士研究生,主要从事深部地热资源(干热岩)开采与评价研究。
  • 基金资助:
    国家重点研发计划(No. 2018YFB1501803-02);吉林省新能源专项(No. SXGJSF2017-5); 大连海岸带填海造陆区1:5万工程地质专项调查(No. DD20189504-2019-3-1)

Numerical simulation of convective heat transfer characteristics of a rough single fracture in granite

GAO Xue-feng1, ZHANG Yan-jun1, HUANG Yi-bin1, ZHAO Yi1, NI Jin2, MA Jing-chen3   

  1. 1. College of Construction Engineering, Jilin University, Changchun, Jilin 130012, China; 2. Shenyang Geological Survey Center, China Geological Survey, Shenyang, Liaoning 110034, China; 3. Beijing Institute of Geological & Prospecting Engineering, Beijing 100048, China
  • Received:2019-05-31 Revised:2019-10-17 Online:2020-05-11 Published:2020-07-08
  • Supported by:
    This work was supported by the National Key R & D Program of China(2018YFB1501803-02), the New Energy Program of Jilin Province (SXGJSF2017-5)and the 1:50 000 Special Survey of Engineering Geology in the Landfill Area of Dalian Coastal Zone (DD20189504-2019-3-1).

摘要: 在干热岩储层中开采地热能,往往需要对储层进行人工水力压裂以形成贯穿的换热通道。然而,热储中的对流换热对干热岩的采热率有重要影响,经过人工刺激的储层会形成几何形态各异的裂隙面,而裂隙粗糙程度的不同则会引起换热性能的显著差异。因此,选取4条Barton的经典岩石裂隙粗糙度曲线,在试验室条件下建立一个单裂隙对流换热模型。详细分析了花岗岩粗糙裂隙中热工质的换热特性。结果表明:局部对流换热系数沿着裂隙长度方向逐渐降低;节理粗糙系数JRC值越大,平均对流换热系数就越大,表明换热性能越好;局部对流换热系数的分布与JRC曲线的几何轮廓形态有很好的相关性,波峰波谷的变化趋势相一致;相对于温度而言,高流速对局部对流换热系数具有放大效应,流速越大,局部对流换热系数波动越大。

关键词: 增强型地热系统, JRC曲线, 对流换热, 粗糙单裂隙

Abstract: In order to exploit geothermal energy in dry hot rock reservoirs, it is often necessary to conduct artificial hydraulic fracturing to form a penetrating heat transfer channel. However, convective heat transfer in thermal reservoir has an important influence on the heat extraction rate of dry hot rock. Artificially stimulated reservoirs will form fracture surfaces with different geometric shapes, while different roughness of fractures will cause significant differences in heat transfer performance. Hence, this study selects four Barton's classical rock fracture roughness profile to establishe a single-fracture convective heat transfer model under laboratory conditions, and to analyze the heat transfer characteristics of the hot working fluid in granite rough fracture in detail. The results show that the local convective heat transfer coefficient decreases gradually along the fracture length direction. The average convective heat transfer coefficient increases with the increase of joint roughness coefficient (JRC), which indicates that the heat transfer performance is better. The distribution of local convective heat transfer coefficient is well correlated with the geometric profile of JRC curve, that is, the variation trends of wave crest and trough of the two curves are consistent. Relative to temperature, the high flow velocity enlarges the local convective heat transfer coefficient, which indicates that the greater the velocity is, the greater the fluctuation of the local convective heat transfer coefficient is.

Key words: enhanced geothermal system, JRC profile, convective heat transfer, rough single fracture

中图分类号: 

  • TU 452
[1] 李正伟,张延军,张 驰,许天福,. 花岗岩单裂隙渗流传热特性试验[J]. , 2018, 39(9): 3261-3269.
[2] 孙斌祥 ,杨丽君 ,王 伟 ,章金钊 ,汪双杰. 透壁通风管路堤的对流换热和蒸发散热[J]. , 2012, 33(3): 674-680.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张力霆,齐清兰,魏静,霍倩,周国斌. 淤填黏土固结过程中孔隙比的变化规律[J]. , 2009, 30(10): 2935 -2939 .
[2] 张其一. 复合加载模式下地基失效机制研究[J]. , 2009, 30(10): 2940 -2944 .
[3] 张明义,刘俊伟,于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. , 2009, 30(10): 3005 -3008 .
[4] 黄平路,陈从新,肖国峰,林 健. 复杂地质条件下矿山地下开采地表变形规律的研究[J]. , 2009, 30(10): 3020 -3024 .
[5] 吴振君,王水林,葛修润. 约束随机场下的边坡可靠度随机有限元分析方法[J]. , 2009, 30(10): 3086 -3092 .
[6] 吴 亮,钟冬望,卢文波. 空气间隔装药爆炸冲击荷载作用下混凝土损伤分析[J]. , 2009, 30(10): 3109 -3114 .
[7] 温 森,赵延喜,杨圣奇. 基于Monte Carlo-BP神经网络TBM掘进速度预测[J]. , 2009, 30(10): 3127 -3132 .
[8] 周晓杰,介玉新,李广信1. 基于渗流和管流耦合的管涌数值模拟[J]. , 2009, 30(10): 3154 -3158 .
[9] 吴昌瑜,张 伟,李思慎,朱国胜. 减压井机械淤堵机制与防治方法试验研究[J]. , 2009, 30(10): 3181 -3187 .
[10] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .