›› 2009, Vol. 30 ›› Issue (S1): 287-292.

• 数值分析 • 上一篇    下一篇

粗粒土尺寸效应的离散元分析

刘海涛,程晓辉   

  1. 清华大学 土木工程系/清华大学结构工程与振动教育部重点试验室,北京 100084
  • 收稿日期:2009-05-20 出版日期:2009-08-10 发布日期:2011-03-16
  • 作者简介:刘海涛,男,1986年生,硕士研究生,主要从事岩土工程数值模拟。
  • 基金资助:

    国家自然科学基金(No.50608041)资助项目。

Discrete element analysis for size effects of coarse-grained soils

LIU Hai-tao, CHENG Xiao-hui   

  1. Department of Civil Engineering, Tsinghua University, Beijing 100084, China
  • Received:2009-05-20 Online:2009-08-10 Published:2011-03-16

摘要:

在土工试验中,粗粒土的力学性质需要考虑颗粒粒径R和试样尺寸L的影响,而利用离散元软件进行数值模拟时,模拟结果的准确性受到计算规模的影响,而计算规模由特征长度比值L/R控制。利用量纲分析理论,可以得到粗粒土数值模型的微观参数和宏观力学参数之间的相似关系,而影响粗粒土抗剪强度的无量纲参数组中,包含特征长度比值L/R。一系列数值三轴压缩试验表明:当L/R足够大(L/R >40)时,L/R对粗粒土抗剪强度没有影响;当L/R较小(L/R<30)时,由于边界摩擦作用,试样的抗剪强度会随着L/R的变化而有较大改变。文中也对离散元软件PFC2D/3D提供的伺服机制进行了讨论。

关键词: 颗粒材料, 粗粒土, 尺寸效应, 特征长度比值, 边界摩擦, 离散元, 相似关系, 伺服机制

Abstract:

In geotechnical tests, particle diameter (R) or sample size (L) accounts for the mechanical properties of coarse-grained soils. Correctness and precision of the results modeled with the discrete element analysis (DEA) is limited by the calculation scale, which is also determined by the characteristic length ratio L/R. Scaling law that describes relationship between micro-parameters and macro-parameters of coarse-grained soils is obtained using dimensional analysis; and it is shown that the shear resistance of coarse-grained soils depends on the characteristic length ratio L/R. A series of numerical triaxial tests are performed; it is shown that the L/R has little effects on the shear resistance when L/R is larger than 40; when L/R is less than 30, the shear resistance will be noticeably affected by L/R because of the effects of the boundary friction. The servo-mechanism provided by PFC2D/3D(Particle Flow Code, ITASCA®)is also discussed.

Key words: granular materials, coarse-grained soil, size effect, characteristic length ratio, boundary friction, DEM, scaling law, servo-mechanism

中图分类号: 

  • TU 443
[1] 周梦佳, 温彦锋, 邓刚, 王蕴嘉, 宋二祥, . 堆石料单颗粒劈裂试验破碎强度随机性与 尺寸效应的三维离散元模拟[J]. 岩土力学, 2019, 40(S1): 503-510.
[2] 孙博, 杨怀德, 谷玲, 刘跃, 唐碧华, 赵桂连, 张连明. 基于UDEC颗粒模型的不确定性分析[J]. 岩土力学, 2019, 40(9): 3679-3688.
[3] 王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的 离散元分析[J]. 岩土力学, 2019, 40(6): 2416-2426.
[4] 付龙龙, 周顺华, 田志尧, 田哲侃, . 双轴压缩条件下颗粒材料中力链的演化[J]. 岩土力学, 2019, 40(6): 2427-2434.
[5] 陈 峥, 何 平, 颜杜民, 高红杰, . 考虑土拱效应的管棚合理间距计算方法[J]. 岩土力学, 2019, 40(5): 1993-2000.
[6] 郭万里, 朱俊高, 钱 彬, 张 丹, . 粗粒土的颗粒破碎演化模型及其试验验证[J]. 岩土力学, 2019, 40(3): 1023-1029.
[7] 赵兰浩, 芮开天, 刘勋楠. 非均匀颗粒快速线性接触检测算法[J]. 岩土力学, 2019, 40(3): 1187-1196.
[8] 顾晓强, 杨朔成, . 基于离散元数值方法的砂土小应变弹性特性探讨[J]. 岩土力学, 2019, 40(2): 785-791.
[9] 郭万里, 蔡正银, 武颖利, 黄英豪. 粗粒土的颗粒破碎耗能及剪胀方程研究[J]. 岩土力学, 2019, 40(12): 4703-4710.
[10] 李静, 孔祥超, 宋明水, 汪勇, 王昊, 刘旭亮, . 储层岩石微观孔隙结构对岩石力学特性 及裂缝扩展影响研究[J]. 岩土力学, 2019, 40(11): 4149-4156.
[11] 肖思友, 苏立君, 姜元俊, 李丞, 刘振宇, . 坡度对碎屑流冲击立式拦挡墙力学特征的影响[J]. 岩土力学, 2019, 40(11): 4341-4351.
[12] 蒋 雄, 徐奴文, 周 钟, 侯东奇, 李 昂, 张 敏, . 两河口水电站母线洞开挖过程围岩破坏机制[J]. 岩土力学, 2019, 40(1): 305-314.
[13] 申海萌, 李 琦, 李霞颖, 马建力, . 川南龙马溪组页岩不同应力条件下脆性破坏特征室内实验与数值模拟研究[J]. 岩土力学, 2018, 39(S2): 254-262.
[14] 高桂云,王成虎,王春权,. 双圆环直接拉伸试验试样最优尺寸范围研究[J]. , 2018, 39(S1): 191-202.
[15] 杨忠民,高永涛,吴顺川,成子桥,. 基于收敛–约束原理的大变形隧道初支更换时机优化研究[J]. , 2018, 39(S1): 395-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘小文,常立君,胡小荣. 非饱和红土基质吸力与含水率及密度关系试验研究[J]. , 2009, 30(11): 3302 -3306 .
[2] 黄建华,宋二祥. 大型锚碇基础围护工程冻结帷幕力学性态研究[J]. , 2009, 30(11): 3372 -3378 .
[3] 王观石,李长洪,陈保君,李世海. 应力波在非线性结构面介质中的传播规律[J]. , 2009, 30(12): 3747 -3752 .
[4] 王朝阳,许 强,倪万魁. 原状黄土CT试验中应力-应变关系的研究[J]. , 2010, 31(2): 387 -391 .
[5] 邓 琴,郭明伟,李春光,葛修润. 基于边界元法的边坡矢量和稳定分析[J]. , 2010, 31(6): 1971 -1976 .
[6] 万少石,年廷凯,蒋景彩,栾茂田. 边坡稳定强度折减有限元分析中的若干问题讨论[J]. , 2010, 31(7): 2283 -2288 .
[7] 闫 铁,李 玮,毕雪亮. 基于分形方法的多孔介质有效应力模型研究[J]. , 2010, 31(8): 2625 -2629 .
[8] 刘 嘉,王 栋. 正常固结黏土中平板锚基础的吸力和抗拉力[J]. , 2009, 30(3): 735 -740 .
[9] 徐维生,柴军瑞,陈兴周,孙旭曙. 岩体裂隙网络非线性非立方渗流研究与应用[J]. , 2009, 30(S1): 53 -57 .
[10] 赵尚毅,郑颖人,李安洪,邱文平,唐晓松,徐 俊. 多排埋入式抗滑桩在武隆县政府滑坡中的应用[J]. , 2009, 30(S1): 160 -164 .