›› 2011, Vol. 32 ›› Issue (3): 811-814.

• 岩土工程研究 • 上一篇    下一篇

基于修正剑桥模型的挤密桩挤土效应分析

宋勇军1,胡 伟2,王德胜3,周军林3   

  1. 1. 长安大学 公路学院,西安 710064; 2. 海南大学 土木建筑学院,海口 570228; 3. 陕西省机械施工公司,西安 710032
  • 收稿日期:2009-08-25 出版日期:2011-03-10 发布日期:2011-03-21
  • 作者简介:宋勇军,男,1979年生,博士研究生,主要从事地基处理和岩石力学方面的教学和研究工作。
  • 基金资助:

    海南省自然科学基金(No. 809001)。

Analysis of squeezing effect of compaction piles based on modified Cam-clay model

SONG Yong-jun , HU Wei , WANG De-sheng , ZHOU Jun-lin   

  1. 1.School of Highway, Chang’an University,Xi’an 710064,China; 2.College of Civil Engineering and Architecture, Hainan University, Haikou570228,China; 3. Shaanxi Mechanized Construction Corporation ,Xi’an 710032,China
  • Received:2009-08-25 Online:2011-03-10 Published:2011-03-21

摘要:

将挤密桩挤土过程视作沿桩长不变的一系列点位形成的球形孔扩张过程,把扩张过程中的桩周土体分为3个区域:流动破坏区、塑性变形区、弹性变形区。应用圆孔扩张理论,结合修正剑桥模型推导出了球孔扩张引起的土体应力、位移分布解析解。结果表明,挤密桩塑性区半径为桩半径的2.92倍,与试验结果基本吻合,验证了该分析方法的可行性。其结果可为挤密桩挤土效应的研究提供一种新的思路。

关键词: 挤密桩, 挤土效应, 圆孔扩张理论, 修正剑桥模型

Abstract:

Squeezed process of compaction pile is considered as a series of constant along the length of the spherical cavity expansion point forming process; the stress distribution due to the spheric cavity expansion is divided into three zones: flow damage zone, plastic deformation zone and elastic deformation zone. The analytical expressions for distribution of the stress and displacement could be deduced on the basis of the cavity expansion theory combining with the Modified Cam-clay model. The results show that the radius of plastic zone is 2.92 times that of radius of pile, verified the feasibility of the method of analysis. The results will provide a new idea for compaction effect research.

Key words: compaction pile, squeezing effect, cavity expansion theory, modified Cam-clay model

中图分类号: 

  • TU 470
[1] 王忠凯, 徐光黎. 盾构掘进、离开施工阶段对地表变形的 影响范围及量化预测[J]. 岩土力学, 2020, 41(1): 285-294.
[2] 朱彦鹏, 杜晓启, 杨校辉, 栗慧王君, . 挤密桩处理大厚度自重湿陷性黄土地区综合 管廊地基及其工后浸水试验研究[J]. 岩土力学, 2019, 40(8): 2914-2924.
[3] 张玉伟, 翁效林, 宋战平, 谢永利, . 考虑黄土结构性和各向异性的修正剑桥模型[J]. 岩土力学, 2019, 40(3): 1030-1038.
[4] 邱 敏, 袁 青, 李长俊, 肖超超, . 基于孔穴扩张理论的黏土不排水抗剪强度 计算方法对比研究[J]. 岩土力学, 2019, 40(3): 1059-1066.
[5] 闫澍旺,张京京,田英辉,陈 浩,. 等向固结饱和黏土卸载孔压特性的试验与理论研究[J]. , 2018, 39(3): 775-781.
[6] 练继建,马煜祥,王海军,王芃文,蒋杏雨, . 筒型基础在粉质黏土中的静压沉放试验研究[J]. , 2017, 38(7): 1856-1862.
[7] 李 林,李镜培,岳著文,唐剑华, . 饱和黏土中钻孔灌注桩孔壁稳定性力学机制研究[J]. , 2016, 37(9): 2496-2504.
[8] 牛亚强 ,王 旭 ,郑 静 ,蒋代军 ,刘德仁 ,蒋鹏程 , . 侧向约束防渗路基新结构防渗效果试验研究[J]. , 2015, 36(S2): 252-258.
[9] 肖勇杰,陈福全,林良庆. 灌注桩套管高频振动贯入过程中挤土效应研究[J]. , 2015, 36(11): 3268-3274.
[10] 杨期君 ,赵春风 , . 含气水合物沉积物弹塑性损伤本构模型探讨[J]. , 2014, 35(4): 991-997.
[11] 杨 旭,陈 飞,练继建,王海军. 考虑挤土效应的筒型基础沉放阻力数值分析及试验验证[J]. , 2014, 35(12): 3585-3591.
[12] 李国维,边圣川,陆晓岑 ,杨 涛 ,雷国辉 . 软基路堤拓宽静压PHC管桩挤土效应现场试验[J]. , 2013, 34(4): 1089-1096.
[13] 黄大维 ,周顺华,刘重庆,陈天文. 护壁套管钻孔灌注桩微扰动施工分析[J]. , 2013, 34(4): 1103-1108.
[14] 吴小锋,李光范,胡 伟,王晓亮. 海口红黏土的结构性本构模型研究[J]. , 2013, 34(11): 3187-3191.
[15] 刘汉龙 ,金 辉 ,丁选明 ,李 健 . 现浇X形混凝土桩沉桩挤土效应现场试验研究[J]. , 2012, 33(S2): 219-223.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[2] 赵洪宝,尹光志,李小双. 烧变后粗砂岩抗拉特性试验研究[J]. , 2010, 31(4): 1143 -1146 .
[3] 何思明,吴 永,李新坡. 嵌岩抗拔桩作用机制研究[J]. , 2009, 30(2): 333 -337 .
[4] 刘清秉,项 伟,张伟锋,崔德山. 离子土壤固化剂改性膨胀土的试验研究[J]. , 2009, 30(8): 2286 -2290 .
[5] 况雨春,伍开松,杨迎新,马德坤. 三牙轮钻头破岩过程计算机仿真模型[J]. , 2009, 30(S1): 235 -238 .
[6] 杜文琪,王 刚. 土工结构地震滑动位移统计分析[J]. , 2011, 32(S1): 520 -0525 .
[7] 鄢治华,刘志伟,刘厚健. 黄河阶地上某电厂高边坡参数选取及其工程治理[J]. , 2009, 30(S2): 465 -468 .
[8] 许振浩 ,李术才 ,李利平 ,侯建刚 ,隋 斌 ,石少帅. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. , 2011, 32(6): 1757 -1766 .
[9] 李顺群 ,高凌霞 ,柴寿喜. 冻土力学性质影响因素的显著性和交互作用研究[J]. , 2012, 33(4): 1173 -1177 .
[10] 钟 声 ,王川婴 ,吴立新 ,唐新建 ,王清远. 点状不良地质体钻孔雷达响应特征 ——围岩及充填效应正演分析[J]. , 2012, 33(4): 1191 -1195 .