›› 2011, Vol. 32 ›› Issue (3): 872-878.

• 数值分析 • 上一篇    下一篇

多层边坡破坏机制数值模拟研究

曹 平,张 科,汪亦显,林 杭   

  1. 中南大学 资源与安全工程学院,长沙 410083
  • 收稿日期:2010-12-21 出版日期:2011-03-10 发布日期:2011-03-21
  • 作者简介:曹平,男,1959年生,博士,教授,博士生导师,主要从事岩土工程理论、试验和数值计算的研究。
  • 基金资助:

    国家自然科学基金资助项目(No. 50744093,No. 10972238);中南大学米塔尔学生创新项目(No. 09MX14)。

Numerical simulation of failure mechanism of multilayer slope

CAO Ping, ZHANG Ke, WANG Yi-xian, LIN Hang   

  1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
  • Received:2010-12-21 Online:2011-03-10 Published:2011-03-21

摘要:

通过大量的多层边坡算例来分析FLAC3D强度折减法在不同强度、坡比和层厚的情况下所得安全系数与滑动面位置的变化规律,并与极限平衡法进行对比,探究强度折减法和极限平衡法所得结果产生差异的原因,揭示多层边坡的破坏机制。数值模拟计算结果表明:①对于上层土体强度较软的边坡,当上下层强度相差到一定程度,表现为上层破坏,强度折减法与极限平衡法的安全系数相对差值最大,达5%~7%;上层土体厚度h增加时,安全系数逐渐减小;上层土体位于地表以下时,滑动面通过坡趾,安全系数保持不变。②对于下层土体强度较软的边坡,当上下层强度相差到一定程度,强度折减法所得安全系数基本保持不变,但极限平衡法仍保持增长趋势,最大相对差值可达12%;上层土体厚度h增加时,安全系数也相应增大,h位于9~12 m,边坡表现为深层破坏;而h=12 m时,极限平衡法的滑动面却通过坡趾,但安全系数相差很小。当h的变化范围在3~5 m,两种方法的安全系数相对差值最大,达6%~10%。破坏区分布分析表明,边坡呈拉伸-剪切复合破坏,对于下层土体强度较软的边坡,复合破坏模式更显著,与单一剪切破坏模式相比,最大有10%左右的相对差值。

关键词: 多层边坡, FLAC3D, 强度折减法, 极限平衡法, 破坏机制, 数值模拟

Abstract:

Through massive examples of multilayer slopes with different intensities, slopes and thicknesses of soil layer, the factors of safety and the locations of critical failure surfaces obtained by the strength reduction method and limit equilibrium method are compared. The differences between two methods are investigated. Failure mechanism of multilayer slopes is studied. The result of numerical simulation shows: ①If the shear strength of the lower layer is larger than the upper one, when difference in shear strength between two layers increases to a certain degree, soil in the upper breaks. Meanwhile, the relative difference of strength reduction method (SRM) and limit equilibrium method (LEM) is in maximum, about 5%-7%. When thickness of upper soil layer increases, the factor of safety gradually decreases; when the upper layer locates below surface, critical failure surface throughs the toe of slope; the factor of safety remains unchanged. ②If the shear strength of the upper layer is larger than the lower, when difference in shear strength between two layers increases to a certain degree, the factors of safety obtained by SRM tend to be stable. As to LEM, the factors of safety maintains increase, the relative difference of is 12% in maximum. When thickness of upper soil layer is increased, the factor of safety increases correspondingly. When thickness of upper soil layer is in the range of 9-12 m, failure mode is deep layer slide, while h=12 m, critical failure surface obtained by LEM just throughs the toe of slope; but with a very small difference in the factor of safety. When thickness of upper soil layer is in the range of 3-5 m, the relative difference of two method is in maximum, about 6%-10%. The distribution of failure zone indicates that multilayer slope is caused by tension and shear failure. As to the slope which the shear strength of the upper layer is larger, this composite failure mechanism is obvious. In comparison with single shear failure, the relative difference is about 10% in maximum.

Key words: multilayer slope, FLAC3D, strength reduction method, limit equilibrium method, failure mechanism, numerical simulation

中图分类号: 

  • TU 457
[1] 李剑, 陈善雄, 余飞, 姜领发, 戴张俊. 预应力锚索加固高陡边坡机制探讨[J]. 岩土力学, 2020, 41(2): 707-713.
[2] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[3] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[4] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[5] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[6] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[7] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[8] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
[9] 吴锦亮, 何吉, . 岩质边坡动态开挖模拟的复合单元模型[J]. 岩土力学, 2019, 40(S1): 535-540.
[10] 杨文波, 邹涛, 涂玖林, 谷笑旭, 刘雨辰, 晏启祥, 何川. 高速列车振动荷载作用下马蹄形断面隧 道动力响应特性分析[J]. 岩土力学, 2019, 40(9): 3635-3644.
[11] 吴凤元, 樊赟赟, 陈剑平, 李军, . 基于不同侵蚀模型的高速崩滑碎屑 流动力过程模拟分析[J]. 岩土力学, 2019, 40(8): 3236-3246.
[12] 孙峰, 薛世峰, 逄铭玉, 唐梅荣, 张翔, 李川, . 基于连续损伤的水平井射孔-近井筒三维破裂模拟[J]. 岩土力学, 2019, 40(8): 3255-3261.
[13] 冯君, 王洋, 吴红刚, 赖冰, 谢先当, . 玄武岩纤维复合材料土层锚杆抗拔性能 现场试验研究[J]. 岩土力学, 2019, 40(7): 2563-2573.
[14] 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837.
[15] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 楚锡华,徐远杰. 基于形状改变比能对M-C准则与 D-P系列准则匹配关系的研究[J]. , 2009, 30(10): 2985 -2990 .
[2] 刘豆豆,陈卫忠,杨建平,谭贤君,周喜德. 脆性岩石卸围压强度特性试验研究[J]. , 2009, 30(9): 2588 -2594 .
[3] 王桂尧,李 斌,罗 军,付宏渊. 粉土基质吸力的新型量测装置与土-水特征研究[J]. , 2010, 31(11): 3678 -3682 .
[4] 贾 强,应惠清,张 鑫. 锚杆静压桩技术在既有建筑物增设地下空间中的应用[J]. , 2009, 30(7): 2053 -2057 .
[5] 路军富,王明年,贾媛媛,喻 渝,谭忠盛. 高速铁路大断面黄土隧道二次衬砌施作时机研究[J]. , 2011, 32(3): 843 -848 .
[6] 党发宁 ,梁昕宇 ,田 威 ,陈厚群. 混凝土随机骨料模型尺寸效应的细观数值分析[J]. , 2009, 30(S2): 518 -523 .
[7] 王成华,安建国. 含扩径桩的群桩基础竖向承载性状数值分析[J]. , 2011, 32(S2): 580 -585 .
[8] 方 焘 ,刘新荣 ,耿大新 ,罗 照 ,纪孝团 ,郑明新 . 大直径变径桩竖向承载特性模型试验研究(I)[J]. , 2012, 33(10): 2947 -2952 .
[9] 李 杰 ,李文培 ,施存程 ,王德荣 ,范鹏贤 . 基于剪切滑移的圆形洞室应力状态研究[J]. , 2012, 33(11): 3271 -3277 .
[10] 胡万雨 ,陈向浩 ,林 江 ,况磊强 . 瀑布沟水电站砾石土心墙初次蓄水期原位钻孔渗流试验研究[J]. , 2013, 34(5): 1259 -1263 .