›› 2009, Vol. 30 ›› Issue (S2): 219-223.

• 基础理论与实验研究 • 上一篇    下一篇

考虑剪应力作用的挡土墙主动土压力计算

陈 林1,张永兴1,冉可新2   

  1. 1.重庆大学 土木工程学院,重庆 400045;2.澳大利亚阿德莱德大学 土木工程学院, 阿德莱德 5000
  • 收稿日期:2009-08-18 出版日期:2009-08-10 发布日期:2011-06-21
  • 作者简介:陈林,男,1985年生,硕士研究生,主要从事地下工程、边坡工程防灾减灾方面的研究。
  • 基金资助:

    国家自然科学基金(No. 50878218);国家杰出青年科学基金(No. 50625824);“十一五”国家科技支撑计划课题子题(No. 2008BAJ06B04)。

A method for calculating active earth pressure considering shear stress

CHEN Lin1, ZHANG Yong-xing1, RAN Ke-xin2   

  1. 1.College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2.Department of Civil Engineering, Adelaide University, Adelaide 5000, Australia
  • Received:2009-08-18 Online:2009-08-10 Published:2011-06-21

摘要:

将墙后土体主应力偏转考虑为土体的土拱效应,根据土拱形状计算平均竖直应力,由此得到了对应不同内摩擦角和墙土摩擦角的侧土压力系数。将其用于水平微分单元法,并满足力和力矩平衡条件求解挡土墙主动土压力,得到了挡土墙主动土压力强度、土压力合力和合力作用点的理论公式,并与库仑土压力理论和模型试验数据进行了比较分析。结果表明,挡土墙主动土压力强度为非线性分布,与模型试验结果基本吻合。

关键词: 土拱, 土压力, 剪应力, 静力平衡

Abstract:

In order to eliminate the calculation inaccuracy, considering the effect of the angle of internal friction on the inclination of the sliding plane of soils behind retaining wall, considering the deflected principal stress as soil arching effect, the horizontally earth pressure factor is calculated for different friction angles of soil and friction angle between wall-surface and soil based on the analysis about minor principal stress of soil arching elements to study the vertical stress. The theoretical formulae of the active earth pressures, the resultant earth pressures and the points of application of resultant earth pressures were obtained based on the method which satisfies the equilibrium condition. The formula presented is compared with some experimental observations. The results agree well with those of the experimental observations.

Key words: soil arching, active earth pressure, shear stress, static equilibrium

中图分类号: 

  • TU 473
[1] 黄宇华, 徐林荣, 周俊杰, 蔡雨, . 基于改进Terzarghi方法的桩网地基桩土应力计算[J]. 岩土力学, 2020, 41(2): 667-675.
[2] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[3] 孔亮, 刘文卓, 袁庆盟, 董彤, . 常剪应力路径下含气砂土的三轴试验[J]. 岩土力学, 2019, 40(9): 3319-3326.
[4] 言志信, 龙哲, 屈文瑞, 张森, 江平, . 地震作用下含软弱层岩体边坡锚固 界面剪切作用分析[J]. 岩土力学, 2019, 40(7): 2882-2890.
[5] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[6] 陈建旭, 宋文武, . 平动模式下挡土墙非极限主动土压力[J]. 岩土力学, 2019, 40(6): 2284-2292.
[7] 汪大海, 贺少辉, 刘夏冰, 张嘉文, 姚文博. 地层渐进成拱对浅埋隧道上覆土压力影响研究[J]. 岩土力学, 2019, 40(6): 2311-2322.
[8] 芮 瑞, 叶雨秋, 陈 成, 涂树杰. 考虑墙壁摩擦影响的挡土墙 主动土压力非线性分布研究[J]. 岩土力学, 2019, 40(5): 1797-1804.
[9] 陈 峥, 何 平, 颜杜民, 高红杰, . 考虑土拱效应的管棚合理间距计算方法[J]. 岩土力学, 2019, 40(5): 1993-2000.
[10] 邵生俊, 陈 菲, 邓国华, . 基于平面应变统一强度公式的结构性黄土填料 挡墙地震被动土压力研究[J]. 岩土力学, 2019, 40(4): 1255-1262.
[11] 张景科, 单婷婷, 王玉超, 王 南, 樊 孟, 赵林毅, . 土遗址锚固土体-浆体(CGN+C)界面力学性能[J]. 岩土力学, 2019, 40(3): 903-912.
[12] 唐德琪, 俞 峰, 陈奕天, 刘念武, . 既有−新增排桩双层支挡结构开挖模型试验研究[J]. 岩土力学, 2019, 40(3): 1039-1048.
[13] 刘 洋, 于鹏强. 刚性挡土墙平移模式的土拱形状 与主动土压力分析[J]. 岩土力学, 2019, 40(2): 506-516.
[14] 梁 波, 厉彦君, 凌学鹏, 赵宁雨, 张青松, . 离心模型试验中微型土压力盒土压力测定[J]. 岩土力学, 2019, 40(2): 818-826.
[15] 张业勤, 陈保国, 孟庆达, 徐昕, . 减载条件下高填方涵洞受力机制及基底压力[J]. 岩土力学, 2019, 40(12): 4813-4818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[2] 高广运,赵元一,高 盟,杨成斌. 分层土中群桩水平动力阻抗的改进计算[J]. , 2010, 31(2): 509 -515 .
[3] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[4] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[5] 胡勇刚,罗 强,张 良,黄 晶,陈亚美. 基于离心模型试验的水泥土搅拌法加固斜坡软弱土地基变形特性分析[J]. , 2010, 31(7): 2207 -2213 .
[6] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[7] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[8] 王学武,许尚杰,党发宁,程素珍. 水位骤降时的非饱和坝坡稳定分析[J]. , 2010, 31(9): 2760 -2764 .
[9] 王维铭,孙 锐,曹振中,袁晓铭. 国内外地震液化场地特征对比研究[J]. , 2010, 31(12): 3913 -3918 .
[10] 杨召亮,孙冠华,郑 宏. 基于潘氏极大值原理的边坡稳定性的整体分析法[J]. , 2011, 32(2): 559 -563 .