›› 2011, Vol. 32 ›› Issue (4): 979-0983.

• 基础理论与实验研究 • 上一篇    下一篇

石灰改性膨胀土击实曲线的双峰特性研究

程 钰1, 2,石名磊3   

  1. (1. 高速公路养护技术交通行业重点实验室,济南 250031;2. 山东省道路结构与材料重点实验室,济南 250031; 3. 东南大学 岩土工程研究所,南京 210096)
  • 收稿日期:2009-11-26 出版日期:2011-04-10 发布日期:2011-04-29
  • 作者简介:程钰,男,1979年生,博士,工程师,主要路基、路面稳定及其数值计算等方面的研究

Bimodal characters of compaction curve of lime treated expansive soil

CHENG Yu1, 2,SHI Ming-lei3   

  1. 1. Key Laboratory of Expressway Maintenance Technology, Ministry of Transport, Jinan 250031, China; 2. Key Laboratory for Road Structure and Materials of Shandong Province, Jinan 250031, China; 3. Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
  • Received:2009-11-26 Online:2011-04-10 Published:2011-04-29

摘要:

膨胀土掺石灰改性之后,其粉粒组的含量显著增加。当采用湿法击实时,由于土体保持了原有的结构性并表现出粉土的特性,在某个较低含水率时,击实功没有超过破坏其结构性的程度,出现一个干密度峰值。随着含水率的增加,击实功破坏了土的结构性,土体重新压实,曲线出现了另一个大干密度的峰值。因此,击实曲线表现出不稳定的双峰现象,从而降低了击实曲线的实用性及可靠性。然而采用修正湿法得到的击实标准,相对于湿法更加合理,相对于干法更加实用可靠,为工程施工质量控制与路基工后质量评价提供了更加有效的方法

关键词: 膨胀土, 消石灰, 击实曲线, 石灰改性

Abstract:

Silt content increases significantly during the experiments of lime treated expansive soil. When the wet method is adopted, the soil maintains original structure and performances of silt features. If the water content at a lower level, the compaction power is lower than the structural damage and the compaction curve shows a dry density peak. With the increasing of water content, compaction power exceeds the structural damage and the compaction curve shows another dry density peak. Therefore, the compaction curves show instable bimodal phenomenon, which reduces the practicality and reliability of the compaction curves. However, the modified wet method is adopted to overcome the shortcomings of both wet method and dry method. The results provide an effective method for quality control of construction and quality evaluation of completion.

Key words: expansive soil, hydrated lime, compaction curve, lime treated

中图分类号: 

  • TU 443
[1] 谢辉辉, 许振浩, 刘清秉, 胡桂阳, . 干湿循环路径下弱膨胀土峰值及残余强度演化研究[J]. 岩土力学, 2019, 40(S1): 245-252.
[2] 刘祖强, 罗红明, 郑敏, 施云江, . 南水北调渠坡膨胀土胀缩特性及变形模型研究[J]. 岩土力学, 2019, 40(S1): 409-414.
[3] 李晶晶, 孔令伟, . 膨胀土卸荷蠕变特性及其非线性蠕变模型[J]. 岩土力学, 2019, 40(9): 3465-3475.
[4] 陈永青, 文畅平, 方炫强, . 生物酶改良膨胀土的修正殷宗泽模型[J]. 岩土力学, 2019, 40(9): 3515-3523.
[5] 李新明, 孔令伟, 郭爱国, . 南阳原状膨胀土不排水剪切性状时效性试验研究[J]. 岩土力学, 2019, 40(8): 2947-2955.
[6] 李新明, 孔令伟, 郭爱国, . 考虑卸荷速率的K0固结膨胀土应力-应变行为[J]. 岩土力学, 2019, 40(4): 1299-1306.
[7] 蔡正银, 朱 洵, 黄英豪, 张 晨. 冻融过程对膨胀土裂隙演化特征的影响[J]. 岩土力学, 2019, 40(12): 4555-4563.
[8] 李新明, 孔令伟, 郭爱国, . 卸荷损伤原状膨胀土剪切力学特性试验研究[J]. 岩土力学, 2019, 40(12): 4685-4692.
[9] 梁维云, 韦昌富, 颜荣涛, 杨德欢. NaCl溶液饱和膨胀土的压缩特性及其微观机制[J]. 岩土力学, 2019, 40(12): 4759-4766.
[10] 李新明, 孔令伟, 郭爱国, . 原状膨胀土剪切力学特性的卸荷速率 效应试验研究[J]. 岩土力学, 2019, 40(10): 3758-3766.
[11] 郑俊杰, 吕思祺, 曹文昭, 景 丹, . 高填方膨胀土作用下刚柔复合桩基 挡墙结构数值模拟[J]. 岩土力学, 2019, 40(1): 395-402.
[12] 李国维, 施赛杰, 侯宇宙, 吴建涛, 李 峰, 吴少甫, . 引江济淮试验工程非膨胀土开发技术实验研究[J]. 岩土力学, 2018, 39(S2): 302-314.
[13] 庄心善, 王俊翔, 王 康, 李 凯, 胡 智. 风化砂改良膨胀土的动力特性研究[J]. 岩土力学, 2018, 39(S2): 149-156.
[14] 胡东旭,李 贤,周超云,薛 乐,刘洪伏,汪时机. 膨胀土干湿循环胀缩裂隙的定量分析[J]. , 2018, 39(S1): 318-324.
[15] 杨和平,唐咸远,王兴正,肖 杰,倪 啸,. 有荷干湿循环条件下不同膨胀土抗剪强度基本特性[J]. , 2018, 39(7): 2311-2317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄平路,陈从新,肖国峰,林 健. 复杂地质条件下矿山地下开采地表变形规律的研究[J]. , 2009, 30(10): 3020 -3024 .
[2] 卢萌盟,谢康和,王玉林,蔡 新. 碎石桩复合地基非线性固结解析解[J]. , 2010, 31(6): 1833 -1840 .
[3] 孙 钧,戚玉亮. 隧道围岩稳定性正算反演分析研究 ——以厦门海底隧道穿越风化深槽施工安全监控为例介绍[J]. , 2010, 31(8): 2353 -2360 .
[4] 张建刚,何 川,杨 征. 大断面宽幅盾构管片三维内力分布分析[J]. , 2009, 30(7): 2058 -2062 .
[5] 陈国庆 ,苏国韶 ,江 权 ,李天斌. 大型地下洞室高边墙的拉应变准则研究[J]. , 2011, 32(S1): 603 -0608 .
[6] 文海家,张永兴,陈 云. 基于三维地质信息模型的边坡风险分析[J]. , 2009, 30(S2): 367 -370 .
[7] 杨志全 ,侯克鹏 ,郭婷婷 ,马 秋. 黏度时变性宾汉体浆液的柱-半球形渗透注浆机制研究[J]. , 2011, 32(9): 2697 -2703 .
[8] 刘艳敏,余宏明,汪 灿,王春磊. 白云岩层中硬石膏岩对隧道结构危害机制研究[J]. , 2011, 32(9): 2704 -2709 .
[9] 冷先伦 ,盛 谦 ,何恩光 ,朱泽奇 ,赵 羽. 南水北调西线TBM掘进下隧洞围岩损伤研究[J]. , 2011, 32(11): 3420 -3431 .
[10] 张忠苗,谢志专,赵玉勃,李慧明. 高临界循环荷载水平下钻孔桩的抗拔性状分析[J]. , 2012, 33(2): 343 -348 .