›› 2011, Vol. 32 ›› Issue (6): 1874-1880.

• 数值分析 • 上一篇    下一篇

深部大断面厚顶煤巷道围岩稳定原理及控制

肖同强1, 2,柏建彪1, 2,王襄禹1, 2,陈 勇1, 2,于 洋1, 2   

  1. 1. 中国矿业大学(徐州) 煤炭资源与安全开采国家重点实验室,江苏 徐州 221008;2. 中国矿业大学(徐州) 矿业工程学院,江苏 徐州 221008
  • 收稿日期:2010-10-08 出版日期:2011-06-10 发布日期:2011-06-21
  • 作者简介:肖同强,男,1981年生,博士,主要从事巷道围岩控制理论与支护技术方面的研究工作
  • 基金资助:

    国家自然科学基金项目(No. 50774077);煤炭资源与安全开采国家重点实验室自主研究课题资助(No. SKLCRSM08X04);国家重点基础研究发展计划(“973”计划);全国博士学位论文作者专项资金资助项目(No. 200760),教育部新世纪优秀人才支持计划(No. NCET-06-0475);中国矿业大学青年科研基金资助项目(No. 2008A002);中央高校基本科研业务费专项资金资助(No. 2010QNA31)

Stability principle and control of surrounding rock in deep coal roadway with large section and thick top-coal

XIAO Tong-qiang1, 2, BAI Jian-biao1, 2, WANG Xiang-yu1, 2, CHEN Yong1, 2, YU Yang1, 2   

  1. 1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China; 2. School of Mines Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
  • Received:2010-10-08 Online:2011-06-10 Published:2011-06-21

摘要: 针对深部高地应力、大断面、厚顶煤巷道围岩控制难题,采用理论分析、数值计算等方法研究了其变形破坏机制及其控制技术。研究结果表明,深部大断面厚顶煤巷道顶煤塑性区呈“拱形”或上宽下窄的“倒梯形”形态,直接顶塑性区则呈“矩形”形态,且存在肩角稳定区域。提出了“倒梯形”塑性区形成的层理面剪切破坏作用机制:在深部高应力(尤其是高水平应力)以及顶煤较大下沉产生的附加水平应力作用下,顶煤和直接顶之间的层理面发生剪切破坏,并引起其附近煤体破坏,促进了顶煤“倒梯形”塑性区的形成。基于此,提出了高强高预紧力锚杆和斜拉锚索梁联合支护围岩控制技术,认为斜拉锚索可锚固在肩角稳定区域,并起到限制顶煤与直接顶岩层之间层理面的剪切变形、阻止顶煤塑性区由“拱形”向“倒梯形”发展的作用。研究成果成功应用于工程实践

关键词: 深部巷道, 厚顶煤, 大断面, 破坏机制, 层理面, 斜拉锚索梁

Abstract: Based on the difficult problem of surrounding rock control in deep coal roadway with large section and thick top-coal, surrounding rock deformation and failure mechanism and its supporting technology are studied. The results show that, for deep coal roadway with large section and thick top-coal, plastic zone of top-coal presents “arched” or “inverted trapezoid” with wide upper and narrow lower, however plastic zone of immediate roof presents “rectangular”; the shoulder stable region exists in the immediate roof. Bedding surface shear failure effect mechanism for “inverted trapezoid” plastic zone is proposed: under the effect of high stress (especially high horizontal stress) and horizontal stress caused by larger roof subsidence; bedding surface between top-coal and immediate roof goes to shear failure, which causes coal body near bedding surface failure; and it promotes the formation of “inverted trapezoid” plastic zone. Based on above, high prestressed bolt with strip and steel mesh combining with diagonal cable and beam structure support is put forward. It is thought that diagonal cable can be anchored to the stability region in the shoulder; and it can limit the shear deformation of bedding surface between top-coal and immediate roof, and also can prevent the development of top-coal plastic zone from “arch” to “inverted trapezoid”. The research results have been successfully applied to roadway supporting.

Key words: deep coal roadway, thick top-coal, large section, failure mechanism, bedding surface, diagonal cable and beam structure

中图分类号: 

  • TD 322
[1] 冯君, 王洋, 吴红刚, 赖冰, 谢先当, . 玄武岩纤维复合材料土层锚杆抗拔性能 现场试验研究[J]. 岩土力学, 2019, 40(7): 2563-2573.
[2] 刘泉声, 邓鹏海, 毕晨, 李伟伟, 刘军, . 深部巷道软弱围岩破裂碎胀过程及锚喷-注浆 加固FDEM数值模拟[J]. 岩土力学, 2019, 40(10): 4065-4083.
[3] 李 栋, 卢义玉, 荣 耀, 周东平, 郭臣业, 张尚斌, 张承客, . 基于定向水力压裂增透的大断面瓦斯 隧道快速揭煤技术[J]. 岩土力学, 2019, 40(1): 363-369.
[4] 杨 琪,张友谊,刘华强,秦 华,. 一种气泡轻质土路基受载-破坏模型试验[J]. , 2018, 39(9): 3121-3129.
[5] 马 凯,尹立明,陈军涛,陈 明,王自起,崔博强,. 深部开采底板隔水关键层受局部高承压水作用破坏理论分析[J]. , 2018, 39(9): 3213-3222.
[6] 郭昭胜,贺武斌,白晓红. 桩-承台-土复合受力体的拟静力模型试验[J]. , 2018, 39(9): 3321-3330.
[7] 刘 聪,李术才,周宗青,李利平,王 康,侯福金, 秦承帅,高成路,. 复杂地层超大断面隧道施工围岩力学特征模型试验[J]. , 2018, 39(9): 3495-3504.
[8] 马旭强,施锡林,尹洪武,杨春和,李银平,马洪岭,. 三轴压缩下含夹层盐岩破坏机制[J]. , 2018, 39(2): 644-650.
[9] 李 韬,徐奴文,戴 峰,李天斌,樊义林,李 彪,. 白鹤滩水电站左岸坝肩开挖边坡稳定性分析[J]. , 2018, 39(2): 665-674.
[10] 滕尚永, 杨圣奇, 黄彦华, 田文岭, . 裂隙充填影响巴西圆盘抗拉力学特性试验研究[J]. 岩土力学, 2018, 39(12): 4493-4507.
[11] 贾金青,高军程,涂兵雄,张 磊,王海涛,高仁哲,. 深基坑中压力型预应力锚杆柔性支护结构的离心模型试验研究[J]. , 2017, 38(S2): 304-310.
[12] 江 贝,李术才,王 琦,王富奇,张若祥,. 基于上限法的深部大断面回采巷道顶板锚索设计方法研究[J]. , 2017, 38(8): 2351-2354.
[13] 唐礼忠,翦英骅,李地元,王 春,邓丽凡,陈 源. 基于微震矩张量的矿山围岩破坏机制分析[J]. , 2017, 38(5): 1436-1444.
[14] 武精科,阚甲广,谢生荣,谢福星,陈冬冬,. 深井高应力软岩沿空留巷围岩破坏机制及控制[J]. , 2017, 38(3): 793-800.
[15] 刘泉声,彭星新,雷广峰,王俊涛,张 静,肖龙鸽4. 特大断面浅埋暗挖隧道十字岩柱开挖技术模型试验研究[J]. , 2017, 38(10): 2780-2788.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 向天兵,冯夏庭,陈炳瑞,江 权,张传庆. 三向应力状态下单结构面岩石试样破坏机制与真三轴试验研究[J]. , 2009, 30(10): 2908 -2916 .
[2] 杨 光,孙 逊,于玉贞,张丙印. 不同应力路径下粗粒料力学特性试验研究[J]. , 2010, 31(4): 1118 -1122 .
[3] 闻世强,陈育民,丁选明,左威龙. 路堤下浆固碎石桩复合地基现场试验研究[J]. , 2010, 31(5): 1559 -1563 .
[4] 张常光,张庆贺,赵均海. 非饱和土抗剪强度及土压力统一解[J]. , 2010, 31(6): 1871 -1876 .
[5] 杨天鸿,陈仕阔,朱万成,刘洪磊,霍中刚,姜文忠. 煤层瓦斯卸压抽放动态过程的气-固耦合模型研究[J]. , 2010, 31(7): 2247 -2252 .
[6] 胡秀宏,伍法权. 岩体结构面间距的双参数负指数分布研究[J]. , 2009, 30(8): 2353 -2358 .
[7] 李卫超,熊巨华,杨 敏. 分层土中水泥土围护结构抗倾覆验算方法的改进[J]. , 2011, 32(8): 2435 -2440 .
[8] 张桂民 ,李银平 ,施锡林 ,杨春和 ,王李娟. 一种交互层状岩体模型材料制备方法及初步试验研究[J]. , 2011, 32(S2): 284 -289 .
[9] 王 伟 李小春 李 强 石 露 王 颖 白 冰. 小尺度原位瞬态压力脉冲渗透性测试系统及试验研究[J]. , 2011, 32(10): 3185 -3189 .
[10] 胡 存,刘海笑,黄 维. 考虑循环载荷下饱和黏土软化的损伤边界面模型研究[J]. , 2012, 33(2): 459 -466 .