›› 2009, Vol. 30 ›› Issue (S2): 547-549.

• 数值分析 • 上一篇    下一篇

埋地钢塑复合缠绕管管土共同作用数值分析

郑 冰 ,郭晓东 ,曾祥勇   

  1. 1.重庆大学 土木工程学院,重庆 400045;2.亚通塑胶(重庆)有限公司,重庆 404000
  • 收稿日期:2009-05-30 出版日期:2009-08-10 发布日期:2011-06-21
  • 作者简介:郑冰,男,1971年生,博士研究生,主要从事岩土工程教学与科研工作
  • 基金资助:

    重庆市科委科技攻关项目(CSTC,2008AC7090)

Numerical analysis of interaction of spiral steel plastic composite buried pipe with ambient soils

ZHENG Bing , GUO Xiao-dong , ZENG Xiang-yong   

  1. 1.College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2.ATON Plastics (Chongqing) Co., Ltd., Chongqing 404000, China
  • Received:2009-05-30 Online:2009-08-10 Published:2011-06-21

摘要: 随着中国污水处理事业的不断发展,钢塑复合缠绕管作为传统水泥排水管的替代产品,具有综合造价低、施工方便、环保效益好、耐久性高等诸多优点,近年来在国内各大城市的污水管网建设中得到了较快地推广。但是作为一种新型结构,这种管道应用的时间尚不长,其管土共同作用机理尚需要人们进行深入研究。本文采用有限元方法对钢塑复合缠绕管的管土共同作用机理进行数值分析,从理论上得出了埋地钢塑复合缠绕管受力后的强度变形特征,可供相关的工程实践参考

关键词: 埋地管, 钢塑复合缠绕管, 管土共同作用, 数值分析, 有限元

Abstract: Recent years buried spiral steel plastic composite pipe has been applied to drainpipe construction of many big cities with the development of sewage treatment business in China. As a substitute for traditional concrete drainpipe, it has many merits such as relatively cheap price, convenient in site installation, beneficial to environment, perdurable work life. But as a new type structure, its interaction mechanism with ambient soils still needs investigation because its application period is not long enough. Finite element method is used for numerical analysis of the interaction of buried spiral steel plastic composite pipe with ambient soils. Strength and deformation characters of buried spiral steel plastic composite pipe and ambient soils are obtained theoretically. Corresponding results can be referenced by related engineering practice.

Key words: buried pipe, spiral steel plastic composite pipe, interaction of pipe with ambient soils, numerical analysis, finite elements

中图分类号: 

  • O 242.21
[1] 孙锐, 杨峰, 阳军生, 赵乙丁, 郑响凑, 罗静静, 姚捷, . 基于二阶锥规划与高阶单元的 自适应上限有限元研究[J]. 岩土力学, 2020, 41(2): 687-694.
[2] 叶观宝, 郑文强, 张 振, . 大面积填土场地中摩擦型桩负摩阻力分布特性研究[J]. 岩土力学, 2019, 40(S1): 440-448.
[3] 赵密, 欧阳文龙, 黄景琦, 杜修力, 赵旭, . P波作用下跨断层隧道轴线地震响应分析[J]. 岩土力学, 2019, 40(9): 3645-3655.
[4] 朱才辉, 崔 晨, 兰开江, 东永强. 砖-土结构劣化及入侵建筑物拆除 对榆林卫城稳定性影响[J]. 岩土力学, 2019, 40(8): 3153-3166.
[5] 张海廷, 杨林青, 郭芳, . 基于SBFEM的层状地基埋置管道动力 响应求解与分析[J]. 岩土力学, 2019, 40(7): 2713-2722.
[6] 曹洪, 胡瑶, 骆冠勇. 滤管两端均不在含水层层面的承压不 完整井近似计算方法研究[J]. 岩土力学, 2019, 40(7): 2774-2780.
[7] 韩俊艳, 侯本伟, 钟紫蓝, 赵密, 李立云, 杜修力. 多点非一致激励下埋地管道多台阵振动台 试验方案研究[J]. 岩土力学, 2019, 40(6): 2127-2139.
[8] 王翔南, 李全明, 于玉贞, 喻葭临, 吕禾, . 基于扩展有限元法对土体滑坡破坏过程的模拟[J]. 岩土力学, 2019, 40(6): 2435-2442.
[9] 周小文, 程 力, 周 密, 王 齐, . 离心机中球形贯入仪贯入黏土特性[J]. 岩土力学, 2019, 40(5): 1713-1720.
[10] 梅慧浩, 冷伍明, 聂如松, 刘文劼, 伍晓伟, . 重载铁路路基面动应力峰值随机分布特征研究[J]. 岩土力学, 2019, 40(4): 1603-1613.
[11] 吴顺川, 马 骏, 程 业, 成子桥, 李建宇, . 平台巴西圆盘研究综述及三维启裂点研究[J]. 岩土力学, 2019, 40(4): 1239-1247.
[12] 邱 敏, 袁 青, 李长俊, 肖超超, . 基于孔穴扩张理论的黏土不排水抗剪强度 计算方法对比研究[J]. 岩土力学, 2019, 40(3): 1059-1066.
[13] 李 宁, 杨 敏, 李国锋. 再论岩土工程有限元方法的应用问题[J]. 岩土力学, 2019, 40(3): 1140-1148.
[14] 郑黎明, 张洋洋, 李子丰, 马平华, 阳鑫军, . 低频波动下考虑孔隙度与压力不同程度变 化的岩土固结渗流分析[J]. 岩土力学, 2019, 40(3): 1158-1168.
[15] 郑安兴, 罗先启, 陈振华, . 基于扩展有限元法的岩体水力劈裂耦合模型[J]. 岩土力学, 2019, 40(2): 799-808.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 祝云华,刘新荣,舒志乐. 对“‘深埋隧道开挖围岩失稳突变模型研究’讨论”的答复[J]. , 2009, 30(10): 3215 -3216 .
[2] 刘小文,常立君,胡小荣. 非饱和红土基质吸力与含水率及密度关系试验研究[J]. , 2009, 30(11): 3302 -3306 .
[3] 王观石,李长洪,陈保君,李世海. 应力波在非线性结构面介质中的传播规律[J]. , 2009, 30(12): 3747 -3752 .
[4] 王朝阳,许 强,倪万魁. 原状黄土CT试验中应力-应变关系的研究[J]. , 2010, 31(2): 387 -391 .
[5] 邓 琴,郭明伟,李春光,葛修润. 基于边界元法的边坡矢量和稳定分析[J]. , 2010, 31(6): 1971 -1976 .
[6] 万少石,年廷凯,蒋景彩,栾茂田. 边坡稳定强度折减有限元分析中的若干问题讨论[J]. , 2010, 31(7): 2283 -2288 .
[7] 闫 铁,李 玮,毕雪亮. 基于分形方法的多孔介质有效应力模型研究[J]. , 2010, 31(8): 2625 -2629 .
[8] 徐维生,柴军瑞,陈兴周,孙旭曙. 岩体裂隙网络非线性非立方渗流研究与应用[J]. , 2009, 30(S1): 53 -57 .
[9] 赵尚毅,郑颖人,李安洪,邱文平,唐晓松,徐 俊. 多排埋入式抗滑桩在武隆县政府滑坡中的应用[J]. , 2009, 30(S1): 160 -164 .
[10] 刘振平,贺怀建,朱发华. 基于钻孔数据的三维可视化快速建模技术的研究[J]. , 2009, 30(S1): 260 -266 .