›› 2011, Vol. 32 ›› Issue (7): 2199-2204.

• 数值分析 • 上一篇    下一篇

基于离散元法的节理岩体边坡稳定性分析

贺续文1, 2,刘 忠1, 2,廖 彪1, 2,王翠翠1, 2   

  1. 1. 湘潭大学 土木工程与力学学院,湖南 湘潭 411105;2. 湘潭大学 流变力学研究所,湖南 湘潭 411105
  • 收稿日期:2009-11-16 出版日期:2011-07-10 发布日期:2011-06-30
  • 作者简介:贺续文,男,1984年生,硕士研究生,主要从事土与结构相互作用方面的研究工作

Stability analysis of jointed rock slopes based on discrete element method

HE Xu-wen1, 2,LIU Zhong1, 2,LIAO Biao1, 2,WANG Cui-cui1, 2   

  1. 1. College of Civil Engineering & Mechanics, Xiangtan University, Xiangtan, Hunan 411105, China; 2. Instutite of Rheological Mechanics, Xiangtan University, Xiangtan, Hunan 411105, China
  • Received:2009-11-16 Online:2011-07-10 Published:2011-06-30

摘要: 节理岩体边坡的稳定性在很大程度上取决于节理的强度及其分布形式。由于节理岩体边坡的失稳破坏具有大变形和非连续的特点,因此,离散单元法成为研究节理岩体边坡破坏机制的最有效方法之一。通过采用离散元软件PFC2D进行数值模拟,对完整岩石及节理的力学性能进行研究,并建立含密集节理的岩体边坡模型,讨论了节理连通率对边坡破坏形式的影响。结果表明,节理岩体边坡的失稳破坏是一个渐进的过程;在多组节理密集分布的岩体边坡中,连通率越大,其稳定性越差;随着连通率的减小,边坡的破坏形式由大范围的滑坡转变为局部崩塌的形式

关键词: 节理, 岩体边坡, 离散元法, 节理连通率, 滑坡

Abstract: The stability of jointed rock slope is mainly controlled by the shear strength and distribution of joints. The failure of jointed rock slopes usually has large deformation and discontinuous features; therefore, discrete element method becomes an efficient way for stability analysis of jointed rock slopes. A general study of the intact rock properties and mechanical characteristics of joints are carried out using the particle flow code in two dimensions (PFC2D); and a heavily jointed rock slope is modeled using PFC2D to study the slope stability. The results reveal that the failure of jointed rock slopes is a gradual process; the joint connectivity has large effect on the stability of rock slopes with heavily joints; when the joint connectivity is more higher, the slope is more unstable; with the decrease of joint connectivity, the slope failure modes will change from the large scale slide into a partially collapsed form

Key words: joints, rock slope, discrete element method, joint connectivity, landslide

中图分类号: 

  • TU 457
[1] 陈贺, 张玉芳, 张新民, 魏少伟, . 高压注浆钢花管微型桩抗滑特性 足尺模型试验研究[J]. 岩土力学, 2020, 41(2): 428-436.
[2] 王培涛, 黄正均, 任奋华, 章亮, 蔡美峰, . 基于3D打印的含复杂节理岩石直剪特性 及破坏机制研究[J]. 岩土力学, 2020, 41(1): 46-56.
[3] 夏才初, 喻强锋, 钱 鑫, 桂 洋, 庄小清. 常法向刚度条件下岩石节理剪切−渗 流特性试验研究[J]. 岩土力学, 2020, 41(1): 57-66.
[4] 于一帆, 王平, 王会娟, 许书雅, 郭海涛, . 堆积层滑坡地震动力响应的物理模型试验[J]. 岩土力学, 2019, 40(S1): 172-180.
[5] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[6] 陈宇龙, 内村太郎, . 基于弹性波波速的降雨型滑坡预警系统[J]. 岩土力学, 2019, 40(9): 3373-3386.
[7] 黄晓虎, 雷德鑫, 夏俊宝, 易武, 张鹏, . 降雨诱发滑坡阶跃型变形的预测分析及应用[J]. 岩土力学, 2019, 40(9): 3585-3592.
[8] 邓茂林, 易庆林, 韩蓓, 周剑, 李卓骏, 张富灵, . 长江三峡库区木鱼包滑坡地表变形规律分析[J]. 岩土力学, 2019, 40(8): 3145-3152.
[9] 余国, 谢谟文, 胡庆忠, 靳玉鹏, . 基于GIS的库岸滑坡滑速计算方法[J]. 岩土力学, 2019, 40(7): 2781-2788.
[10] 赵久彬, 刘元雪, 刘娜, 胡明, . 海量监测数据下分布式BP神经网络区域 滑坡空间预测方法[J]. 岩土力学, 2019, 40(7): 2866-2872.
[11] 王蕴嘉, 宋二祥. 堆石料颗粒形状对堆积密度及强度影响的 离散元分析[J]. 岩土力学, 2019, 40(6): 2416-2426.
[12] 王翔南, 李全明, 于玉贞, 喻葭临, 吕禾, . 基于扩展有限元法对土体滑坡破坏过程的模拟[J]. 岩土力学, 2019, 40(6): 2435-2442.
[13] 杨宗佶, 蔡 焕, 雷小芹, 王礼勇, 丁朋朋, 乔建平, . 非饱和地震滑坡堆积体降雨破坏水-力 耦合行为试验[J]. 岩土力学, 2019, 40(5): 1869-1880.
[14] 高青鹏, 曹 平, 王 飞, 王 柱. 压剪作用下多节理类岩试样力学性质及破坏判据[J]. 岩土力学, 2019, 40(3): 1013-1022.
[15] 裴向军, 朱 凌, 崔圣华, 张晓超, 梁玉飞, 高会会, 张子东. 大光包滑坡层间错动带液化特性及 滑坡启动成因探讨[J]. 岩土力学, 2019, 40(3): 1085-1096.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 唐明明,王芝银,马兰平,曾志华,张之沛. 油气管道穿越黄土冲沟的管线设计参数研究[J]. , 2010, 31(4): 1314 -1318 .
[2] 张广明,刘 合,张 劲,吴恒安,王秀喜. 储层流固耦合的数学模型和非线性有限元方程[J]. , 2010, 31(5): 1657 -1662 .
[3] 冉 龙,胡 琦. 粉砂地基深基坑渗透破坏研究[J]. , 2009, 30(1): 241 -245 .
[4] 李俊才,纪广强,宋桂华,张 琼,王志亮,严小敏. 高层建筑疏桩筏板基础现场实测与分析[J]. , 2009, 30(4): 1018 -1022 .
[5] 魏 宁,李小春,王 燕,谷志孟. 城市垃圾填埋场甲烷资源量与利用前景[J]. , 2009, 30(6): 1687 -1692 .
[6] 牛文杰,叶为民,刘绍刚,禹海涛. 考虑饱和-非饱和渗流的土坡极限分析[J]. , 2009, 30(8): 2477 -2482 .
[7] 林达明,尚彦军,孙福军,孙元春,吴锋波,刘志强. 岩体强度估算方法研究及应用[J]. , 2011, 32(3): 837 -842 .
[8] 邓东平,李 亮,赵炼恒. 基于Janbu法的边坡整体稳定性滑动面搜索新方法[J]. , 2011, 32(3): 891 -898 .
[9] 吴 剑,冯少孔,李宏阶. 钻孔成像中结构面自动判读技术研究[J]. , 2011, 32(3): 951 -957 .
[10] 李建军,邵生俊,杨扶银,杨春鸣. 防渗墙粗粒土槽孔泥皮的抗渗性试验研究[J]. , 2012, 33(4): 1087 -1093 .