›› 2011, Vol. 32 ›› Issue (7): 2205-2210.

• 数值分析 • 上一篇    下一篇

基于损伤力学分析的水力压裂三维裂缝形态研究

王素玲1,姜民政1,刘 合2   

  1. 1. 东北石油大学 机械科学与工程学院,黑龙江 大庆 163318;2. 中国石油勘探开发研究院,北京 100083
  • 收稿日期:2010-03-02 出版日期:2011-07-10 发布日期:2011-06-30
  • 作者简介:王素玲,女,1975年生,博士,副教授,主要从事油气田地面工程方面的研究工作
  • 基金资助:

    中国自然科学基金(No. 51004023);中国石油科技创新基金(No. 2009D-5006-02-06)联合资助

Study of hydraulic fracturing morphology based on damage mechanics analysis

WANG Su-ling1,JIANG Min-zheng1,LIU He2   

  1. 1. School of Mechanical Science and Engineering, Northest Petroleum University, Daqing, Heilongjiang 163318, China; 2. Research Institute of Petroleum Exploration Development, Beijing 100083, China
  • Received:2010-03-02 Online:2011-07-10 Published:2011-06-30

摘要: 水力压裂三维裂缝形态及延伸的预测是评价水力压裂效果的主要因素,采用了损伤力学与断裂力学相结合的方法,描述了裂缝表面岩体的力学行为,建立了裂缝面上的损伤判据与损伤演化方程。根据岩石力学与渗流力学,采用有限元方法建立了低渗透储层岩体的流固-损伤耦合方程,并采用Newton-Raphson与线性搜索相结合的方法进行求解,获得了低渗透油层水力压裂三维裂缝的动态扩展过程及最终形态,揭示其力学本质。通过算例验证了理论及计算方法的正确性。在此基础上,分析了影响裂缝扩展的主要因素,其结果可为水力压裂设计提供较为可靠和准确的预测手段,以提高油层水力压裂措施的成功率

关键词: 水力压裂, 三维裂缝, 损伤力学, 数值模拟

Abstract: The prediction of three-dimensional hydraulic fracturing morphology and extension is the main factor to evaluate the effects of hydraulic fracturing; adopting the method that combining damage mechanics and fracture mechanics to describe the mechanical behavior of cracks in the surface rock, and then the damage criterion and damage evolution equation in the crack surface are established. The equation is solved by using the method combining Newton-Raphson and the linear search; and then the dynamic crack extension process and the final morphology of hydraulic fracturing three-dimensional are obtained; and the mechanical essence is revealed. The correctness of the theory and calculation is verified through numerical examples; based on which, the main factor of crack extension is analyzed. The results provide more reliable and accurate prediction methods for hydraulic fracturing design, so as to improve reservoir hydraulic fracturing success rate.

Key words: hydraulic fracturing, three-dimensional fracture, damage mechanics, numerical simulation

中图分类号: 

  • O346
[1] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[2] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[3] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[4] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[5] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[6] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[7] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
[8] 吴锦亮, 何吉, . 岩质边坡动态开挖模拟的复合单元模型[J]. 岩土力学, 2019, 40(S1): 535-540.
[9] 吴凤元, 樊赟赟, 陈剑平, 李军, . 基于不同侵蚀模型的高速崩滑碎屑 流动力过程模拟分析[J]. 岩土力学, 2019, 40(8): 3236-3246.
[10] 孙峰, 薛世峰, 逄铭玉, 唐梅荣, 张翔, 李川, . 基于连续损伤的水平井射孔-近井筒三维破裂模拟[J]. 岩土力学, 2019, 40(8): 3255-3261.
[11] 武晋文, 冯子军, 梁栋, 鲍先凯, . 单轴应力下带钻孔花岗岩注入高温蒸汽 破坏特征研究[J]. 岩土力学, 2019, 40(7): 2637-2644.
[12] 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837.
[13] 张钰彬, 黄丹. 页岩水力压裂过程的态型近场动力学模拟研究[J]. 岩土力学, 2019, 40(7): 2873-2881.
[14] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[15] 张 帆, 马 耕, 冯 丹, . 大尺寸真三轴煤岩水力压裂模拟试验 与裂缝扩展分析[J]. 岩土力学, 2019, 40(5): 1890-1897.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 祝云华,刘新荣,舒志乐. 对“‘深埋隧道开挖围岩失稳突变模型研究’讨论”的答复[J]. , 2009, 30(10): 3215 -3216 .
[2] 刘小文,常立君,胡小荣. 非饱和红土基质吸力与含水率及密度关系试验研究[J]. , 2009, 30(11): 3302 -3306 .
[3] 王朝阳,许 强,倪万魁. 原状黄土CT试验中应力-应变关系的研究[J]. , 2010, 31(2): 387 -391 .
[4] 高 阳,张庆松,徐帮树,李 伟. 海底采煤顶板支承压力分布规律与影响因素研究[J]. , 2010, 31(4): 1309 -1313 .
[5] 万少石,年廷凯,蒋景彩,栾茂田. 边坡稳定强度折减有限元分析中的若干问题讨论[J]. , 2010, 31(7): 2283 -2288 .
[6] 闫 铁,李 玮,毕雪亮. 基于分形方法的多孔介质有效应力模型研究[J]. , 2010, 31(8): 2625 -2629 .
[7] 刘 嘉,王 栋. 正常固结黏土中平板锚基础的吸力和抗拉力[J]. , 2009, 30(3): 735 -740 .
[8] 徐维生,柴军瑞,陈兴周,孙旭曙. 岩体裂隙网络非线性非立方渗流研究与应用[J]. , 2009, 30(S1): 53 -57 .
[9] 赵尚毅,郑颖人,李安洪,邱文平,唐晓松,徐 俊. 多排埋入式抗滑桩在武隆县政府滑坡中的应用[J]. , 2009, 30(S1): 160 -164 .
[10] 刘振平,贺怀建,朱发华. 基于钻孔数据的三维可视化快速建模技术的研究[J]. , 2009, 30(S1): 260 -266 .