›› 2011, Vol. 32 ›› Issue (7): 2225-2230.

• 数值分析 • 上一篇    下一篇

强震作用下松散海床地基的动力响应

陈永伟1,刘显群2 ,王立忠1,舒 恒3   

  1. 1. 浙江大学 建筑工程学院,杭州 310027;2. 浙江省电力设计院,杭州 310014; 3. 中交第二公路勘察设计研究院有限公司,武汉 430056
  • 收稿日期:2009-11-13 出版日期:2011-07-10 发布日期:2011-06-30
  • 作者简介:陈永伟,男,1986年生,硕士,主要从事砂土液化方面的研究工作

Dynamic response of loose seabed foundation under meizoseismic load

CHEN Yong-wei1,LIU Xian-qun2,WANG Li-zhong1,SHU Hen3   

  1. 1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 2. Zhejiang Electric Power Design Institute, Hangzou 310014, China; 3. No. 2 Highway Survey & Design Institute Co., Ltd., Wuhan 430056, China
  • Received:2009-11-13 Online:2011-07-10 Published:2011-06-30

摘要: 海上和沿海区域砂性土地基在强震作用下需同时考虑液化、震陷以及流滑效应。选用杨朝晖叠套屈服面模型,提出了获取计算参数的简化方法,用OpenSees验证了该模型模拟液化的能力;开发了OpenSees与ANSYS的接口,对处于强震地区、地基土为松散砂性土的印尼某进水明渠堤坝进行了非线性有限元动力计算,判断了场地的液化情况,预测了堤坝及地基的震陷量和侧向流滑,计算结果对该类地基的加固处理具有一定的指导意义

关键词: 液化, 震陷, 流滑, OpenSees, 叠套屈服面

Abstract: Liquefaction, seismic subsidence and lateral spreading should be considered when a sandy foundation in the seabed or maritime province sustains meizoseismic load. Zhaohui Yang’s nested constitutive mode is incorporated into OpenSees to evaluate its capacity of simulating soil liquefaction; and a simple method to get parameters is introduced. An interface between OpenSees and ANSYS is constructed; and then a dam on loose sandy foundation which is in the strong earthquake area is analyzed by the nonlinear finite element method. The results give out the liquefaction condition of the foundation and predict the seismic subsidence and lateral spreading, it would help us to do the foundation reinforcement treatment with such cases

Key words: liquefaction, seismic subsidence, lateral spreading, OpenSees, nested constitutive mode

中图分类号: 

  • TU 443
[1] 马维嘉, 陈国兴, 吴琪, . 复杂加载条件下珊瑚砂抗液化强度试验研究[J]. 岩土力学, 2020, 41(2): 535-542.
[2] 熊辉, 杨丰, . 文克尔地基模型下液化土桩基水平振动响应分析[J]. 岩土力学, 2020, 41(1): 103-110.
[3] 李兆焱, 袁晓铭, 孙锐. 液化判别临界曲线的变化模式与一般规律[J]. 岩土力学, 2019, 40(9): 3603-3609.
[4] 杨洋, 孙锐, 陈卓识, 袁晓铭. 基于土层常规参数的剪切波速液化概率计算公式[J]. 岩土力学, 2019, 40(7): 2755-2764.
[5] 汪俊敏, 熊勇林, 杨骐莱, 桑琴扬, 黄强. 不饱和土动弹塑性本构模型研究[J]. 岩土力学, 2019, 40(6): 2323-2331.
[6] 邹佑学, 王睿, 张建民, . 可液化场地碎石桩复合地基地震动力响应分析[J]. 岩土力学, 2019, 40(6): 2443-2455.
[7] 庄海洋, 付继赛, 陈 苏, 陈国兴, 王雪剑, . 微倾斜场地中地铁地下结构周围地基液化与变形特性振动台模型试验研究[J]. 岩土力学, 2019, 40(4): 1263-1272.
[8] 魏 星, 张 昭, 王 刚, 张建民, . 饱和砂土液化后大变形机制的离散元细观分析[J]. 岩土力学, 2019, 40(4): 1596-1602.
[9] 裴向军, 朱 凌, 崔圣华, 张晓超, 梁玉飞, 高会会, 张子东. 大光包滑坡层间错动带液化特性及 滑坡启动成因探讨[J]. 岩土力学, 2019, 40(3): 1085-1096.
[10] 李晶, 陈育民, 方志, 高晗, 飞田哲男, 周葛, . 减饱和砂土缓倾场地的液化性状分析[J]. 岩土力学, 2019, 40(11): 4352-4360.
[11] 王丽艳, 巩文雪, 曹晓婷, 姜朋明, 王炳辉. 砾钢渣抗液化特性试验研究[J]. 岩土力学, 2019, 40(10): 3741-3750.
[12] 许成顺, 豆鹏飞, 杜修力, 陈苏, 韩俊艳, . 液化自由场地震响应大型振动台模型试验分析[J]. 岩土力学, 2019, 40(10): 3767-3777.
[13] 高冉, 叶剑红, . 中国南海吹填岛礁钙质砂动力特性试验研究[J]. 岩土力学, 2019, 40(10): 3897-3896.
[14] 许成顺, 豆鹏飞, 高畄成, 陈 苏, 杜修力, . 地震动持时压缩比对可液化地基地震反应 影响的振动台试验[J]. 岩土力学, 2019, 40(1): 147-155.
[15] 宋 佳,古 泉,许成顺,杜修力,. 饱和土动力方程全显式有限元法在 OpenSees中的实现与应用[J]. , 2018, 39(9): 3477-3485.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张文杰,陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. , 2010, 31(1): 211 -215 .
[2] 宫伟力,安里千,赵海燕,毛灵涛. 基于图像描述的煤岩裂隙CT图像多尺度特征[J]. , 2010, 31(2): 371 -376 .
[3] 万 智,董 辉,刘宝琛. 基于正交设计下SVM滑坡变形时序回归预测的超参数选择[J]. , 2010, 31(2): 503 -508 .
[4] 孙曦源,栾茂田,唐小微. 饱和软黏土地基中桶形基础水平承载力研究[J]. , 2010, 31(2): 667 -672 .
[5] 王明年,郭 军,罗禄森,喻 渝,杨建民,谭忠盛. 高速铁路大断面黄土隧道深浅埋分界深度研究[J]. , 2010, 31(4): 1157 -1162 .
[6] 胡勇刚,罗 强,张 良,黄 晶,陈亚美. 基于离心模型试验的水泥土搅拌法加固斜坡软弱土地基变形特性分析[J]. , 2010, 31(7): 2207 -2213 .
[7] 谭峰屹,姜志全,李仲秋,颜惠和. 附加质量法在昆明新机场填料压实密度检测中的应用研究[J]. , 2010, 31(7): 2214 -2218 .
[8] 柴 波,殷坤龙,肖拥军. 巴东新城区库岸斜坡软弱带特征[J]. , 2010, 31(8): 2501 -2506 .
[9] 王光进,杨春和,张 超,马洪岭,孔祥云,侯克鹏. 超高排土场的粒径分级及其边坡稳定性分析研究[J]. , 2011, 32(3): 905 -913 .
[10] 胡海军,蒋明镜,赵 涛,彭建兵,李 红. 制样方法对重塑黄土单轴抗拉强度影响的初探[J]. , 2009, 30(S2): 196 -199 .