›› 2011, Vol. 32 ›› Issue (8): 2261-2266.

• 基础理论与实验研究 • 上一篇    下一篇

冻土三轴蠕变特性试验研究及平面冻土墙厚度的确定

张向东,傅 强   

  1. 辽宁工程技术大学 土木与交通学院,辽宁 阜新 123000
  • 收稿日期:2010-12-11 出版日期:2011-08-10 发布日期:2011-08-16
  • 作者简介:张向东,男,1962年生,博士,教授,博士生导师,主要从事岩土工程和交通土建方向的教学与科研工作
  • 基金资助:

    国家自然科学基金项目“高速铁路风积土路基的振(震)陷变形试验研究”(No. 5097813);辽宁省高等学校优秀人才支持计划项目“风积土冻胀与融沉特性及工程防治措施的研究” 资助(No. 2008RC23)

Experimental study of triaxial creep properties of frozen soil and thickness determination of flat frozen soil wall

ZHANG Xiang-dong, FU Qiang   

  1. School of Civil Engineering and Transportation, Liaoning Technical University, Fuxin, Liaoning 123000, China
  • Received:2010-12-11 Online:2011-08-10 Published:2011-08-16

摘要: 主要是对冻土的三轴蠕变特性进行分析研究,从而进一步确定具有明显流变特性的平面冻土墙的厚度。通过对冻土的流变特性进行理论分析,建立了冻黏土在复杂应力状态下的对数型蠕变方程。采用“低温箱-三轴压力室”轻型试验设备系统对人工配制的冻黏土试件进行了三轴蠕变试验,获得了冻黏土在复杂应力状态下的蠕变曲线。根据试验结果,对冻黏土的对数型非线性蠕变方程进行回归分析,得到了冻黏土对数型蠕变方程参数的数值。根据冻土流变理论和所建立的蠕变方程,以及平面冻土墙的厚度计算公式,利用Visualc++ 6.0和Matlab 6.0技术开发了冻土墙厚度计算的计算机应用软件。分析研究了平面冻土墙厚度与跨度、基坑暴露时间、基坑开挖深度的关系。平面冻土墙厚度随时间的延长在短期内具有急速增长的趋势,而后随时间的延长逐渐趋于稳定;平面冻土墙厚度受其跨度的影响较小,但随基坑开挖深度的加深具有逐步增长的趋势;温度对平面冻土墙厚度的影响显著,温度越高,厚度越大,所以,控制温度是平面冻土墙设计中的关键。从而为蠕变变形较大的平面冻土墙的厚度确定提供了依据。

关键词: 冻黏土, 蠕变, 流变理论, 冻土墙

Abstract: In order to determine the thickness of flat frozen soil wall with evident rheological properties, the triaxial creep properties of frozen soil are analyzed. Through theoretical analysis of rheological properties of frozen soil, the logarithmic creep equation of frozen clay is established under complex stress state. The triaxial creep tests for manual prepared frozen clay specimens are carried out by “cold box-triaxial pressure chamber” light test equipment system; so that the creep curves of frozen clay under complex stress state are obtained. According to the test results, the logarithmic creep equation parameters of frozen clay are obtained through regression analysis of logarithmical nonlinear creep equation. According to the rheological theory of frozen soil and the established creep equation, as well as the thickness formula of flat frozen soil wall, through adopting Visualc++ 6.0 and Matlab 6.0, the computer application software is exploited which can calculate thickness of frozen clay wall. With the software, the relationships between the thickness and the span, the pit exposure time, and the pit excavation depth are analyzed. The thickness of flat frozen soil wall possesses rapid growth trend with time extension in the short term and then gradually becomes stable. The thickness of flat frozen soil wall is affected lightly by the span; but it possesses gradual upward trend with the increasing of excavation depth of pit. The temperature affects the thickness of flat frozen soil wall significantly; the higher the temperature is, the larger the thickness is. Consequently, controlling the temperature is the key to the design of flat frozen soil wall. Thus, the results provide a basis for thickness determination of flat frozen soil wall with a large creep deformation.

Key words: frozen clay, creep, rheological theory, frozen soil wall

中图分类号: 

  • TU 411
[1] 陈卫忠, 李翻翻, 雷江, 于洪丹, 马永尚, . 热−水−力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2): 379-388.
[2] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[3] 王立业, 周凤玺, 秦虎, . 饱和盐渍土分数阶蠕变模型及试验研究[J]. 岩土力学, 2020, 41(2): 543-551.
[4] 雷江, 陈卫忠, 李翻翻, 于洪丹, 马永尚, 谢华东, 王富刚, . 引红济石引水隧洞围岩力学特性研究[J]. 岩土力学, 2019, 40(9): 3435-3446.
[5] 李晶晶, 孔令伟, . 膨胀土卸荷蠕变特性及其非线性蠕变模型[J]. 岩土力学, 2019, 40(9): 3465-3475.
[6] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[7] 曹 梦, 叶剑红, . 中国南海钙质砂蠕变-应力-时间四参数数学模型[J]. 岩土力学, 2019, 40(5): 1771-1777.
[8] 朱赛楠, 殷跃平, 李 滨, . 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40(4): 1377-1386.
[9] 李 鑫, 刘恩龙, 侯 丰, . 考虑温度影响的冻土蠕变本构模型[J]. 岩土力学, 2019, 40(2): 624-631.
[10] 杨秀荣, 姜谙男, 王善勇, 张峰瑞, . 冻融循环条件下片麻岩蠕变特性试验研究[J]. 岩土力学, 2019, 40(11): 4331-4340.
[11] 张峰瑞, 姜谙男, 江宗斌, 张广涛. 化学腐蚀-冻融综合作用下岩石损伤蠕变 特性试验研究[J]. 岩土力学, 2019, 40(10): 3879-3888.
[12] 曾 寅, 刘建锋, 周志威, 吴 池, 李志成, . 盐岩单轴蠕变声发射特征及损伤演化研究[J]. 岩土力学, 2019, 40(1): 207-215.
[13] 刘泉声, 罗慈友, 陈自由, 刘 鹤, 桑昊旻, 万文恺, . 现场岩体三轴流变试验设备研制[J]. 岩土力学, 2018, 39(S2): 473-479.
[14] 唐建新,腾俊洋,张 闯,刘 姝, . 层状含水页岩蠕变特性试验研究[J]. , 2018, 39(S1): 33-41.
[15] 蔡婷婷,冯增朝,赵 东,姜玉龙,. 基于硬化-损伤机制的贫煤蠕变本构模型研究[J]. , 2018, 39(S1): 61-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 刘玉成,曹树刚,刘延保. 可描述地表沉陷动态过程的时间函数模型探讨[J]. , 2010, 31(3): 925 -931 .
[3] 刘恩龙. 岩土破损力学:结构块破损机制与二元介质模型[J]. , 2010, 31(S1): 13 -22 .
[4] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. , 2010, 31(S2): 38 -42 .
[5] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[6] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[7] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[8] 陈 林,张永兴,冉可新. 考虑剪应力作用的挡土墙主动土压力计算[J]. , 2009, 30(S2): 219 -223 .
[9] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[10] 王云岗 ,章 光 ,胡 琦. 斜桩基础受力特性研究[J]. , 2011, 32(7): 2184 -2190 .