›› 2011, Vol. 32 ›› Issue (S2): 228-232.

• 基础理论与实验研究 • 上一篇    下一篇

岩石爆破过程S波的产生机制分析

金旭浩1, 2, 3,卢文波1, 2,田 勇1, 2,严 鹏1, 2,陈 明1, 2   

  1. 1. 武汉大学 水资源与水电工程科学国家重点试验室,武汉 430072; 2. 武汉大学 水工岩石力学教育部重点试验室,武汉 430072;3. 水利部综合事业局,北京 100053
  • 收稿日期:2011-05-12 出版日期:2011-08-10 发布日期:2011-08-26
  • 通讯作者: 卢文波,男,1968年生,博士,教授,博士生导师,主要从事岩石动力学及工程爆破方面的教学与研究工作。E-mail:wblu@whu.edu.cn E-mail:jxh@mwr.gov.cn
  • 作者简介:金旭浩,1978年生,博士研究生,主要从事岩石动力学方面的研究工作
  • 基金资助:

    国家973计划项目(No. 2010CB732003);国家自然科学基金面上项目(No. 51009013,No. 50909077)

Analysis of mechanisms of S wave generated in rock blasting process

JIN Xu-hao 1, 2, 3, LU Wen-bo1, 2, TIAN Yong1, 2, YAN Peng1, 2, CHEN Ming1, 2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan 430072, China; 3. Bureau of Comprehensive Development, Ministry of Water Resources, Beijing 100053
  • Received:2011-05-12 Online:2011-08-10 Published:2011-08-26

摘要: 全面总结、分析了岩石爆破过程S波的产生机制,表明短柱状药包、炮孔周围岩体的开裂与破碎以及装药偏离球形或柱形空腔中心,均可诱发S波,并且诱发S波的幅值可超过P波;P波传播过程与岩体界面的相互作用,可产生次生的S波(透、反射SV波)。在此基础上,就爆破振动场模拟方法与计算模型选择中如何体现S波的产生机制方面提出了建议

关键词: 爆破, 振动, 应力波, S波

Abstract: Mechanisms of S wave induced during rock fragmentation by blasting are concluded and analyzed as follows. The short column charge, cracking and breakage of rock mass around blast hole and deviation of charge away from the centre of spherical or cylindrical cavities can induce S wave. The interaction of P wave with rock interfaces during propagation can produce secondary S waves (transmitted and reflected S waves). On the basis of this, some proposals on how to choose the numerical method and calculation model during blasting vibration simulation are put forward so as to reflect the mechanisms of induced S waves.

Key words: blasting, vibration, stress wave, S wave

中图分类号: 

  • O 383.1
[1] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[2] 熊辉, 杨丰, . 文克尔地基模型下液化土桩基水平振动响应分析[J]. 岩土力学, 2020, 41(1): 103-110.
[3] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[4] 于一帆, 王平, 王会娟, 许书雅, 郭海涛, . 堆积层滑坡地震动力响应的物理模型试验[J]. 岩土力学, 2019, 40(S1): 172-180.
[5] 姜谙男, 张权, 吴洪涛, 段龙梅, 焦明伟, 白涛, . 基于改进局部安全度的爆破作用边坡稳定性分析[J]. 岩土力学, 2019, 40(S1): 511-518.
[6] 王体强, 王永志, 袁晓铭, 汤兆光, 王海, 段雪锋. 基于振动台试验的加速度积分位移方法可靠性研究[J]. 岩土力学, 2019, 40(S1): 565-573.
[7] 杨文波, 邹涛, 涂玖林, 谷笑旭, 刘雨辰, 晏启祥, 何川. 高速列车振动荷载作用下马蹄形断面隧 道动力响应特性分析[J]. 岩土力学, 2019, 40(9): 3635-3644.
[8] 陈文化, 张谦. 地铁列车进出站时土层空间振动特性分析[J]. 岩土力学, 2019, 40(9): 3656-3661.
[9] 高广运, 谢伟, 陈娟, 赵宏, . 高铁运行引起的高架桥群桩基础地面振动衰减分析[J]. 岩土力学, 2019, 40(8): 3197-3206.
[10] 刘新荣, 邓志云, 刘永权, 刘树林, 路雨明, . 地震作用下水平层状岩质边坡累积损伤与 破坏模式研究[J]. 岩土力学, 2019, 40(7): 2507-2516.
[11] 韩俊艳, 钟紫蓝, 李立云, 赵密, 万宁潭, 杜修力. 纵向非一致激励下自由场土体的非线性 地震反应研究[J]. 岩土力学, 2019, 40(7): 2581-2592.
[12] 韩俊艳, 侯本伟, 钟紫蓝, 赵密, 李立云, 杜修力. 多点非一致激励下埋地管道多台阵振动台 试验方案研究[J]. 岩土力学, 2019, 40(6): 2127-2139.
[13] 卢俊龙, 张荫, . 地基与密肋复合墙结构相互作用系统频域 地震响应试验研究[J]. 岩土力学, 2019, 40(6): 2163-2171.
[14] 姜立春, 罗恩民, 沈彬彬, . 多自由度模型法的立体采空区群爆破 动力响应研究[J]. 岩土力学, 2019, 40(6): 2407-2415.
[15] 史 吏, 王慧萍, 孙宏磊, 潘晓东, . 群桩基础引发饱和地基振动的近似解析解[J]. 岩土力学, 2019, 40(5): 1750-1760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏 丽,柴寿喜,蔡宏洲,王晓燕,李 敏,石 茜. 麦秸秆加筋材料抗拉性能的实验研究[J]. , 2010, 31(1): 128 -132 .
[2] 黄庆享,张 沛,董爱菊. 浅埋煤层地表厚砂土层“拱梁”结构模型研究[J]. , 2009, 30(9): 2722 -2726 .
[3] 荆志东,刘俊新. 红层泥岩半刚性基床结构动态变形试验研究[J]. , 2010, 31(7): 2116 -2121 .
[4] 刘争宏,廖燕宏,张玉守. 罗安达砂物理力学性质初探[J]. , 2010, 31(S1): 121 -126 .
[5] 王登科,刘 建,尹光志,韦立德. 突出危险煤渗透性变化的影响因素探讨[J]. , 2010, 31(11): 3469 -3474 .
[6] 樊恒辉,高建恩,吴普特,娄宗科. 水泥基土壤固化剂固化土的物理化学作用[J]. , 2010, 31(12): 3741 -3745 .
[7] 王 军,曹 平,李江腾,刘业科. 降雨入渗对流变介质隧道边坡稳定性的分析[J]. , 2009, 30(7): 2158 -2162 .
[8] 张 渊,万志军,康建荣3,赵阳升. 温度、三轴应力条件下砂岩渗透率阶段特征分析[J]. , 2011, 32(3): 677 -683 .
[9] 张雪婵 ,龚晓南 ,尹序源 ,赵玉勃. 杭州庆春路过江隧道江南工作井监测分析[J]. , 2011, 32(S1): 488 -0494 .
[10] 唐世斌,唐春安,李连崇,张永彬. 湿度扩散诱发的隧洞时效变形数值模拟研究[J]. , 2011, 32(S1): 697 -0703 .