›› 2011, Vol. 32 ›› Issue (S2): 306-312.

• 基础理论与实验研究 • 上一篇    下一篇

水泥固化/稳定锌污染土的强度和变形特性试验研究

魏明俐,杜延军,张 帆   

  1. 东南大学 岩土工程研究所,南京 210096
  • 收稿日期:2011-04-15 出版日期:2011-08-10 发布日期:2011-08-26
  • 作者简介:魏明俐,男,1983年生,博士研究生,主要从事环境岩土工程的研究
  • 基金资助:

    国家自然科学基金(No. 50878052, No.40972173);教育部新世界优秀人才计划(No. NCET-09-0286);江苏省科技支撑计划(No. BK2010060)

Fundamental properties of strength and deformation of cement solidified/stabilized zinc contaminated soils

WEI Ming-li, DU Yan-jun, ZHANG Fan   

  1. Institute of Geotechnical Engineering, Southeast University, Nanjing 210096, China
  • Received:2011-04-15 Online:2011-08-10 Published:2011-08-26

摘要: 在不同水泥掺量不同和龄期条件下对不同Zn2+浓度的水泥固化/稳定重金属污染土(CHMS)进行了无侧限抗压强度试验。分析了CHMS的应力-应变关系和强度发展随Zn2+浓度的变化特性;采用参数(qu/qu,Zn0)对CHMS的无侧限抗压强度随龄期发展规律进行了评价;讨论了Zn2+浓度对破坏应变和变形模量的影响。结果表明,锌离子浓度对CHMS的无侧限抗压强度、破坏应变和变形模量的影响均存在“临界浓度”(0.05%)。低于“临界浓度”时,锌离子对CHMS的强度和变形发展影响不明显;高于“临界浓度”时,CHMS的强度和变形发展规律受锌离子浓度影响显著

关键词: 固化/稳定, 重金属, 无侧限抗压强度

Abstract: To investigate characteristics of strength and deformation of cement solidified/stabilized heavy metal contaminated soils(CHMS), a series of unconfined compression tests were performed. Samples of CHMS were prepared artificially by adding zinc nitrate as a source of pollutant at zinc concentrations of 0.01, 0.02, 0.05, 0.1, and 0.2 mg/kg (dry soil weight basis), and three cement contents of 12%, 15%, and 18% (dry soil weight basis). The effect of zinc concentration on stress-strain curves is discussed. A proposed parameter (qu/qu,Zn0) is adopted to investigate the effect of zinc concentration on strength properties of samples. The influence of zinc concentration on the strain at failure and deformation modulus is evaluated. It is found that there exits a critical zinc concentration in terms of its influence on strength, strain at failure, and deformation modulus. The influence is marginal in the case that zinc concentration is lower than the critical value, whereas the influence is considerable in the case that zinc concentration is higher than the critical value.

Key words: solidification/ stabilization, heavy metal, unconfined compressive strength

中图分类号: 

  • TU 432
[1] 高运昌, 高盟, 尹诗, . 聚氨酯固化海砂的静力特性试验研究[J]. 岩土力学, 2019, 40(S1): 231-236.
[2] 范日东, 刘松玉, 杜延军, . 基于改进滤失试验的重金属污染 膨润土渗透特性试验研究[J]. 岩土力学, 2019, 40(8): 2989-2996.
[3] 沈泰宇, 汪时机, 薛乐, 李贤, 何丙辉, . 微生物沉积碳酸钙固化砂质黏性紫色土试验研究[J]. 岩土力学, 2019, 40(8): 3115-3124.
[4] 查甫生, 刘晶晶, 许龙, 邓永锋, 杨成斌, 储诚富, . 水泥−粉煤灰固化/稳定重金属污染土的电阻率 特性试验研究[J]. 岩土力学, 2019, 40(12): 4573-4580.
[5] 吕擎峰, 周 刚, 王生新, 霍振升, 马 博, . 固化盐渍土核磁共振微观特征[J]. 岩土力学, 2019, 40(1): 245-249.
[6] 陈瑞锋,田高源,米栋云,董晓强,. 赤泥改性黄土的基本工程性质研究[J]. , 2018, 39(S1): 89-97.
[7] 张亭亭,王 平,李江山,万 勇,薛 强,王士权, . 养护龄期和铅含量对磷酸镁水泥固化/稳定化铅污染土的固稳性能影响规律及微观机制[J]. , 2018, 39(6): 2115-2123.
[8] 章定文,项 莲,曹智国, . CaO对钙矾石固化/稳定化重金属铅污染土的影响[J]. , 2018, 39(1): 29-35.
[9] 刘晋铭,欧忠文,肖寒冰,莫金川,杨康辉. 功能组分对固化土早期强度的影响研究[J]. , 2017, 38(3): 755-761.
[10] 邓友生,吴 鹏,赵明华,段邦政,. 基于最优含水率的聚丙烯纤维增强膨胀土强度研究[J]. , 2017, 38(2): 349-353.
[11] 孙潇昊,缪林昌,童天志,王呈呈, . 微生物沉积碳酸钙固化砂土试验研究[J]. , 2017, 38(11): 3225-3230.
[12] 张亭亭,李江山,王 平,黄 茜,薛 强. 磷酸镁水泥固化铅污染土的力学特性试验研究及微观机制[J]. , 2016, 37(S2): 279-286.
[13] 崔明娟,郑俊杰,赖汉江. 颗粒粒径对微生物固化砂土强度影响的试验研究[J]. , 2016, 37(S2): 397-402.
[14] 张亭亭,李江山,王 平,李振泽. 磷酸镁水泥固化铅污染土的应力-应变特性研究[J]. , 2016, 37(S1): 215-225.
[15] 查甫生,王连斌,刘晶晶,许 龙,崔可锐. 高钙粉煤灰固化重金属污染土的工程性质试验研究[J]. , 2016, 37(S1): 249-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王 刚,李术才,王明斌. 渗透压力作用下加锚裂隙岩体围岩稳定性研究[J]. , 2009, 30(9): 2843 -2849 .
[2] 刘玉成,曹树刚,刘延保. 可描述地表沉陷动态过程的时间函数模型探讨[J]. , 2010, 31(3): 925 -931 .
[3] 刘恩龙. 岩土破损力学:结构块破损机制与二元介质模型[J]. , 2010, 31(S1): 13 -22 .
[4] 介玉新,杨光华. 基于广义位势理论的弹塑性模型的修正方法[J]. , 2010, 31(S2): 38 -42 .
[5] 杨建民,郑 刚. 基坑降水中渗流破坏归类及抗突涌验算公式评价[J]. , 2009, 30(1): 261 -264 .
[6] 周 华,王国进,傅少君,邹丽春,陈胜宏. 小湾拱坝坝基开挖卸荷松弛效应的有限元分析[J]. , 2009, 30(4): 1175 -1180 .
[7] 叶 飞,朱合华,何 川. 盾构隧道壁后注浆扩散模式及对管片的压力分析[J]. , 2009, 30(5): 1307 -1312 .
[8] 陈 林,张永兴,冉可新. 考虑剪应力作用的挡土墙主动土压力计算[J]. , 2009, 30(S2): 219 -223 .
[9] 罗 强 ,王忠涛 ,栾茂田 ,杨蕴明 ,陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. , 2011, 32(S1): 732 -0737 .
[10] 王云岗 ,章 光 ,胡 琦. 斜桩基础受力特性研究[J]. , 2011, 32(7): 2184 -2190 .