›› 2011, Vol. 32 ›› Issue (10): 3177-3184.

• 基础理论与实验研究 • 上一篇    下一篇

地下结构碎石排水层抗液化措施数值试验

何剑平1, 3,陈卫忠1, 2   

  1. 1.山东大学 岩土与结构工程研究中心,济南 250061;2.中国科学院武汉岩土力学研究所,武汉 430071;3.山东大学 威海分校,山东 威海 264209
  • 收稿日期:2010-07-12 出版日期:2011-10-10 发布日期:2011-10-13
  • 作者简介:何剑平,男,1960年生,博士研究生,高工,主要从事结构抗震试验研究方面的工作
  • 基金资助:

    国家自然科学基金西部重大研究计划项目资助(No. 90510019);国家自然科学基金资助项目资助(No. 40772184,No. 90715042);中国科学院西部行动计划高新技术研究项目资助(No. KJCX2-YW-506)

Numerical experiment of anti-liquefaction measure with gravel stone drainage layer around underground structure

HE Jian-ping1, 3, CHEN Wei-zhong1, 2   

  1. 1. Geotechnical and Structural Engineering Research Center, Shandong University, Jinan 250061, China; 2. Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China; 3. Weihai Branch of Shandong University, Weihai, Shandong 264209, China
  • Received:2010-07-12 Online:2011-10-10 Published:2011-10-13

摘要: 过数值模拟验证液化的隔振作用。在浅埋地下结构周围设置碎石排水层,应用FLAC3D作碎石排水层法抗液化数值模拟试验,分析不同碎石排水层方案的抗液化效果和液化场施加碎石排水层后地下结构的动力特性变化。计算结果表明,典型液化场中砂土达到液化状态,其加速度、速度、位移振幅马上衰减;砂土在液化状态变为流体,液化过程是砂土体积压应变不断积累增大的过程,液化后体积压应变积累不再增加,液化土有效应力和抗剪强度均为0,不能传递剪力,起隔离外界力的作用,液化场中结构的加速度反应也比非液化场或弹性场小。液化场中结构的存在降低了其周围的动水压力,结构阻障了周围土液化的产生。液化场中地下结构周围设置碎石排水层,结构周围则不会液化,远处液化场超静水压力显著降低,结构不出现上浮,结构下沉,水平漂移减小,内力增大。研究成果为地下结构穿越液化土层设计提供理论及试验基础

关键词: 超静孔压比, 有效应力, 体积应变增量, Biot方程, 碎石排水层

Abstract: The numerical simulation test is performed for validation vibration isolation function of liquefaction. A gravel drainage layer is applied around underground structure; the anti-liquefaction numerical simulation tests of gravel drainage layer were performed using FLAC3D. Anti-liquefaction effect of the different gravel drainage layer programmes is analyzed; and dynamic characteristic change of underground structures after imposition a gravel drainage layer in liquefaction field is also analyzed. Calculations indicate that when the sandy soil is in the liquefied condition in the model liquefaction field, its acceleration, the speed, the displacement oscillation amplitude weaken immediately. The sandy soil becomes the fluid in the liquefied condition. The liquefaction process is the process which the sandy soil volume pressure strain accumulates unceasingly. The volume pressure strain accumulation no longer increases after the sandy soil is liquefied. The effective stress of liquefied soil is zero. The shearing strength is zero. The liquefied soil cannot transmit the shearing force and isolates outside force. The acceleration of structure in liquefied field is also smaller than the non-liquefied field or the elastic field. The structure, which is in the liquefied field, reduced the hydrodynamic pressure around structure. The structure interrupted the liquefaction around structure. The gravel drainage layer around underground structure will not be liquefied. The ultra hydrostatic pressure in distant place liquefied field reduces obviously. The structure is not floating, the structure subsided. The horizontal drift reduced. The internal force increased. Research results will provide a theoretical and experimental basis for the design of underground structures through the liquefied soil layer.

Key words: excess static pore-water pressure ratio, volumetric strain increment, effective stress, Biot equation, gravel drainage layer

中图分类号: 

  • TU 435
[1] 方瑾瑾, 冯以鑫, 王立平, 余永强, . 真三轴条件下非饱和黄土的有效应力屈服特性[J]. 岩土力学, 2020, 41(2): 492-500.
[2] 涂园, 王奎华, 周建, 胡安峰, . 有效应力法和有效固结压力法在预压地基 强度计算中的应用[J]. 岩土力学, 2020, 41(2): 645-654.
[3] 吴爽爽, 胡新丽, 章涵, 周昌, 龚辉, . 嵌岩桩负摩阻力现场试验与计算方法研究[J]. 岩土力学, 2019, 40(9): 3610-3617.
[4] 毛小龙, 刘月田, 关文龙, 任兴南, 冯月丽, 丁祖鹏, . 一种适用于孔隙体积应变的有效应力方程[J]. 岩土力学, 2019, 40(8): 3004-3010.
[5] 郑国锋, 郭晓霞, 邵龙潭, . 基于状态曲面的非饱和土强度准则及其验证[J]. 岩土力学, 2019, 40(4): 1441-1448.
[6] 陈育民, 陈润泽, 霍正格, . 饱和悬浮塑料砂流动变形可视环剪试验研究[J]. 岩土力学, 2019, 40(10): 3709-3716.
[7] 段晓梦,曾立峰, . 非饱和土的承载结构与岩土广义结构性[J]. , 2018, 39(9): 3103-3112.
[8] 张天军,尚宏波,李树刚,魏文伟,包若羽,潘红宇,. 三轴应力下不同粒径破碎砂岩渗透特性试验[J]. , 2018, 39(7): 2361-2370.
[9] 陈卫忠,马永尚,于洪丹,龚 哲,李香玲,. 泥岩核废料处置库温度-渗流-应力耦合参数敏感性分析[J]. , 2018, 39(2): 407-416.
[10] 李 林, 李镜培, 赵高文, 崔纪飞, . 基于有效应力法的静压桩时变承载力研究[J]. 岩土力学, 2018, 39(12): 4547-4553.
[11] 钱劲松,李嘉洋,周 定,凌建明. 考虑吸力效应的非饱和黏土回弹模量预估模型[J]. , 2018, 39(1): 123-128.
[12] 周凤玺,曹小林,马 强,. 颗粒间的毛细作用以及吸应力特征曲线分析[J]. , 2017, 38(7): 2036-2042.
[13] 王 宝,董兴玲,. 不同有效应力下矿山渗滤液对土工合成黏土衬垫渗透特性影响的试验研究[J]. , 2017, 38(5): 1350-1358.
[14] 项国圣,徐永福,陈 涛,姜 昊,. 盐溶液中膨润土膨胀变形的分形模型[J]. , 2017, 38(1): 75-80.
[15] 宋子亨,杨 强,刘耀儒. 考虑孔隙水压力作用的岩土体弹塑性模型及其有限元实现[J]. , 2016, 37(S1): 500-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[2] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[3] 李 晶,缪林昌,钟建驰,冯兆祥. EPS颗粒混合轻质土反复荷载下变形和阻尼特性[J]. , 2010, 31(6): 1769 -1775 .
[4] 梁健伟,房营光,谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. , 2010, 31(10): 3043 -3050 .
[5] 王丽艳,姜朋明,刘汉龙. 砂性地基中防波堤地震残余变形机制分析与液化度预测法[J]. , 2010, 31(11): 3556 -3562 .
[6] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[7] 谷拴成,苏培莉,王建文,王宏科. 烧变岩体特性及其注浆扩散行为研究[J]. , 2009, 30(S2): 60 -63 .
[8] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[9] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[10] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .