›› 2012, Vol. 33 ›› Issue (2): 623-627.

• 数值分析 • 上一篇    下一篇

城市垃圾填埋场振动台试验的数值模拟研究

邓学晶1, 2,邹德高2,孔宪京2   

  1. 1.中国石油大学(华东)工程力学系,山东 东营 257061;2.大连理工大学 海岸和近海工程国家重点试验室,辽宁 大连 116024
  • 收稿日期:2010-01-20 出版日期:2012-02-10 发布日期:2012-02-14
  • 作者简介:邓学晶,男,1973年生,博士,副教授,主要从事土工建筑物抗震等方面的研究。
  • 基金资助:

    辽宁省教育厅基金(No. 2008S047);国家自然科学基金重点项目(No. 50538080);海岸与近海国家重点实验室开放基金(No. LP1010)。

Numerical simulation for shaking-table test of municipal waste landfills

DENG Xue-jing1, 2, ZOU De-gao2, KONG Xian-jing2   

  1. 1. Department of Engineering Mechanics, China University of Petroleum (East China), Dongying, Shandong 257061, China; 2. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
  • Received:2010-01-20 Online:2012-02-10 Published:2012-02-14

摘要: 对填埋场振动台模型试验进行非线性数值分析,并与试验结果相互补充、印证,进一步考察填埋场的地震响应规律。研究表明,特殊的夹层结构形式导致水平地震作用下城市垃圾填埋场存在两个主要的响应频率,在这两个主要频率附近模型顶部取得峰值加速度响应;不考虑其他因素的影响,填埋场防渗层的地震永久位移与输入地震动的水平位移振幅近似呈正比关系;坡比是影响填埋场覆盖层和衬垫层永久位移最主要的因素。

关键词: 城市垃圾填埋场, 振动台试验, 地震响应, 数值模拟

Abstract: Based on the previous work of eight large scale physical model experiments of landfill conducted on shaking table, nonlinear numerical simulation for the test is performed subsequently; and the experimental and numerical results are verified and supplemented one another in order to further examine the characteristics of the seismic response of landfill. The follow results can be got: (1) Due to the special sandwich constructions, landfill has two main response frequencies; the peak acceleration responses at top of landfill are obtained in the vicinity of the two main frequencies under horizontal earthquake. (2) When other parameters are fixed, seism-induced permanent displacement of landfill liner is shown to be approximately proportional to the amplitude of input motion. (3) The inclination angle of landfill cover and base slope have significant effect on the critical sliding acceleration of cover and base liner system respectively.

Key words: municipal waste landfill, shaking table test, seismic response, numerical simulation

中图分类号: 

  • X 705
[1] 吴琪, 丁选明, 陈志雄, 陈育民, 彭宇, . 不同地震动强度下珊瑚礁砂地基中桩-土-结构 地震响应试验研究[J]. 岩土力学, 2020, 41(2): 571-580.
[2] 李翻翻, 陈卫忠, 雷江, 于洪丹, 马永尚, . 基于塑性损伤的黏土岩力学特性研究[J]. 岩土力学, 2020, 41(1): 132-140.
[3] 夏 坤, 董林, 蒲小武, 李璐, . 黄土塬地震动响应特征分析[J]. 岩土力学, 2020, 41(1): 295-304.
[4] 郭院成, 李明宇, 张艳伟, . 预应力锚杆复合土钉墙支护体系增量解析方法[J]. 岩土力学, 2019, 40(S1): 253-258.
[5] 闫国强, 殷跃平, 黄波林, 张枝华, 代贞伟, . 三峡库区巫山金鸡岭滑坡成因机制与变形特征[J]. 岩土力学, 2019, 40(S1): 329-340.
[6] 刘红岩. 宏细观缺陷对岩体力学特性及边坡稳定影响研究[J]. 岩土力学, 2019, 40(S1): 431-439.
[7] 金爱兵, 刘佳伟, 赵怡晴, 王本鑫, 孙浩, 魏余栋, . 卸荷条件下花岗岩力学特性分析[J]. 岩土力学, 2019, 40(S1): 459-467.
[8] 韩征, 粟滨, 李艳鸽, 王伟, 王卫东, 黄健陵, 陈光齐, . 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40(S1): 477-485.
[9] 吴锦亮, 何吉, . 岩质边坡动态开挖模拟的复合单元模型[J]. 岩土力学, 2019, 40(S1): 535-540.
[10] 王体强, 王永志, 袁晓铭, 汤兆光, 王海, 段雪锋. 基于振动台试验的加速度积分位移方法可靠性研究[J]. 岩土力学, 2019, 40(S1): 565-573.
[11] 吴凤元, 樊赟赟, 陈剑平, 李军, . 基于不同侵蚀模型的高速崩滑碎屑 流动力过程模拟分析[J]. 岩土力学, 2019, 40(8): 3236-3246.
[12] 孙峰, 薛世峰, 逄铭玉, 唐梅荣, 张翔, 李川, . 基于连续损伤的水平井射孔-近井筒三维破裂模拟[J]. 岩土力学, 2019, 40(8): 3255-3261.
[13] 刘新荣, 邓志云, 刘永权, 刘树林, 路雨明, . 地震作用下水平层状岩质边坡累积损伤与 破坏模式研究[J]. 岩土力学, 2019, 40(7): 2507-2516.
[14] 韩俊艳, 钟紫蓝, 李立云, 赵密, 万宁潭, 杜修力. 纵向非一致激励下自由场土体的非线性 地震反应研究[J]. 岩土力学, 2019, 40(7): 2581-2592.
[15] 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 魏龙海,王明年,赵东平,吉艳雷. 翔安海底公路隧道陆域段变形控制措施研究[J]. , 2010, 31(2): 577 -581 .
[2] 陈运平,王思敬. 多级循环荷载下饱和岩石的弹塑性响应[J]. , 2010, 31(4): 1030 -1034 .
[3] 贾 强,张 鑫. 板式基础托换法开发地下空间施工过程的数值分析[J]. , 2010, 31(6): 1989 -1994 .
[4] 顾绍付,刘仰韶,刘仕顺. Asaoka法推算软基沉降偏差的修正方法探讨[J]. , 2010, 31(7): 2238 -2240 .
[5] 李雄威,孔令伟,郭爱国. 气候影响下膨胀土工程性质的原位响应特征试验研究[J]. , 2009, 30(7): 2069 -2074 .
[6] 宋勇军,胡 伟,王德胜,周军林. 基于修正剑桥模型的挤密桩挤土效应分析[J]. , 2011, 32(3): 811 -814 .
[7] 鲁 涛,王孔伟,李建林. 库水压力作用下砂岩破坏形式的探究[J]. , 2011, 32(S1): 413 -0418 .
[8] 魏明尧,王恩元,刘晓斐,王 超. 深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J]. , 2011, 32(8): 2539 -2543 .
[9] 黄茂松 ,李 波 . 往复荷载下层状地基柔性筏板-群桩共同作用分析[J]. , 2012, 33(8): 2388 -2394 .
[10] 卢 强,王占江,李 进,郭志昀,门朝举. 球面波加载下黄土线黏弹性本构关系[J]. , 2012, 33(11): 3292 -3298 .