›› 2012, Vol. 33 ›› Issue (3): 925-932.

• 数值分析 • 上一篇    下一篇

盾尾注浆硬性浆液固结变形数值计算模型构建

袁小会1,韩月旺2,钟小春3   

  1. 1. 华北水利水电学院 土木与交通学院,郑州 450011;2. 郑州市轨道交通有限公司,郑州 450046;3. 河海大学 土木学院,南京 210098
  • 收稿日期:2010-11-22 出版日期:2012-03-10 发布日期:2012-03-12
  • 作者简介:袁小会,女,1977年生,硕士,讲师,主要从事城市轨道交通方面的科研与教学工作
  • 基金资助:

    国家自然科学基金资助项目(No. 50908075);高等学校博士学科点专项科研基金(No. 20070294029)。

Numerical model building for consolidation deformation of cemented mortar for shield tail grouting

YUAN Xiao-hui1, HAN Yue-wang2, ZHONG Xiao-chun3   

  1. 1. College of Civil and Transportation Engineering, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011, China; 2. Zhengzhou Rail Traffic Co., Ltd., Zhengzhou 450046, China; 3. College of Civil Engineering, Hohai University, Nanjing 210098, China
  • Received:2010-11-22 Online:2012-03-10 Published:2012-03-12

摘要: 为了更为合理地评价盾构壁后注浆控制地层变形机制,采用自制的硬性浆液固结变形试验装置,对水泥胶结作用影响硬性浆液的固结过程进行了试验研究。在此基础上,分析并建立了能够反映水泥胶结作用的硬性浆液固结变形模型,编制了相应的数值计算程序,并通过试验验证了该模型的合理性。硬性浆液固结变形数值计算模型的构建对于提高盾构施工模拟精细度将起到一定的推动作用。

关键词: 盾构隧道, 盾尾注浆, 硬性浆液, 胶结作用, 固结模型, 数值计算

Abstract: In order to evaluate the deformation control mechanism of shield tail void grouting, the influence of cementation on consolidation process of cemented mortar is studied by the self-made experimental apparatus of consolidation deformation. On this basis, consolidation deformation model of cemented mortar is built, which can reflect the influence of cementation. The numerical calculation program is made, which is verified by experimental results. The numerical calculation model of cemented mortar consolidation deformation will play an important role to improve the simulation accuracy of shield tunnel construction.

Key words: shield tunnel, shield tail grouting, cemented mortar, cementation, consolidation model, numerical calculation

中图分类号: 

  • U 25
[1] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[2] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[3] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[4] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[5] 吴美苏, 周成, 王林, 谭昌明, . 根系和裂隙对土体水力和力学特性影响数值模拟[J]. 岩土力学, 2019, 40(S1): 519-526.
[6] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[7] 莫振泽, 王梦恕, 李海波, 钱勇进, 罗跟东, 王辉, . 粉砂地层中浓泥土压盾构泥膜效应引起的 孔压变化规律试验研究[J]. 岩土力学, 2019, 40(6): 2257-2263.
[8] 郑黎明, 张洋洋, 李子丰, 马平华, 阳鑫军, . 低频波动下考虑孔隙度与压力不同程度变 化的岩土固结渗流分析[J]. 岩土力学, 2019, 40(3): 1158-1168.
[9] 姚爱军,张剑涛,郭海峰,郭彦非. 地铁盾构隧道上方基坑开挖卸荷-加载影响研究[J]. , 2018, 39(7): 2318-2326.
[10] 钟 宇,陈 健,陈国良,吴佳明, . 基于建筑信息模型技术的盾构隧道结构信息模型建模方法[J]. , 2018, 39(5): 1867-1876.
[11] 杨文波,陈子全,徐朝阳,晏启祥,何 川,韦 凯, . 盾构隧道与周围土体在列车振动荷载作用下的动力响应特性[J]. , 2018, 39(2): 537-545.
[12] 康 成, 梅国雄, 梁荣柱, 吴文兵, 方宇翔, 柯宅邦, . 地表临时堆载诱发下既有盾构隧道纵向变形分析[J]. 岩土力学, 2018, 39(12): 4605-4616.
[13] 李长俊,陈卫忠,杨建平,刘金泉, . 运营期水下盾构隧道管片接缝张开度变化规律[J]. , 2018, 39(10): 3783-3793.
[14] 魏 纲,林 雄,金 睿,丁 智,. 双线盾构施工时邻近地下管线安全性判别[J]. , 2018, 39(1): 181-190.
[15] 姜 燕,杨光华,陈富强,徐传堡,张玉成, . 湛江湾高水头跨海盾构隧道管片结构典型断面受力计算与监测反馈分析[J]. , 2018, 39(1): 275-286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 周爱军,栗 冰. CFG桩复合地基褥垫层的试验研究和有限元分析[J]. , 2010, 31(6): 1803 -1808 .
[2] 陈 宇,张庆贺,朱继文,姚海明. 双圆盾构穿越下立交结构的流-固耦合数值模拟[J]. , 2010, 31(6): 1950 -1955 .
[3] 顾绍付,刘仰韶,刘仕顺. Asaoka法推算软基沉降偏差的修正方法探讨[J]. , 2010, 31(7): 2238 -2240 .
[4] 刘明贵,刘绍波,张国华. GPU通用计算模式在岩土工程中的应用[J]. , 2010, 31(9): 3019 -3024 .
[5] 孙德安,孟德林,孙文静,刘月妙. 两种膨润土的土-水特征曲线[J]. , 2011, 32(4): 973 -0978 .
[6] 鲁 涛,王孔伟,李建林. 库水压力作用下砂岩破坏形式的探究[J]. , 2011, 32(S1): 413 -0418 .
[7] 张 磊 ,龚晓南 ,俞建霖. 考虑土体屈服的纵横荷载单桩变形内力分析[J]. , 2011, 32(8): 2441 -2445 .
[8] 魏明尧,王恩元,刘晓斐,王 超. 深部煤层卸压爆破防治冲击地压效果的数值模拟研究[J]. , 2011, 32(8): 2539 -2543 .
[9] 陈亿军 ,薛 强 ,孙可明 ,赵 颖 ,万 勇 . 土质陡坡降雨侵蚀的数学模型及求解方法[J]. , 2012, 33(5): 1579 -1584 .
[10] 徐黎明,陈剑平,王 清. 多参数岩体结构面优势分组方法研究[J]. , 2013, 34(1): 189 -195 .