›› 2012, Vol. 33 ›› Issue (4): 1031-1039.

• 基础理论与实验研究 • 上一篇    下一篇

软基中500 kV输电桩板塔基现场试验与数值模拟

刘振平,贺怀建,白世伟,张 华,邹 丹,李火兵   

  1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071
  • 收稿日期:2010-10-28 出版日期:2012-04-13 发布日期:2012-04-26
  • 作者简介:刘振平,男,1981年生,博士,助理研究员,主要从事岩土工程数值计算、三维可视化技术方面的研究工作。

Field test and numerical simulation of pile-slab foundation of 500 kV transmission line tower in silt

LIU Zhen-ping,HE Huai-jian,BAI Shi-wei,ZHANG Hua,ZOU Dan,LI Huo-bing   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Science, Wuhan 430071, China
  • Received:2010-10-28 Online:2012-04-13 Published:2012-04-26

摘要: 针对软弱淤泥地质条件下500 kV输电线铁塔桩板基础型式,在对桩进行完整性检测后,又对整个桩板基础进行了现场堆载、上拔力学试验,同时监测板底压力与桩身钢筋计的受力状况以及大板4脚、基柱的位移变形。试验结果表明,桩板基础具有良好的抗压、抗拔性能,在抵御外载荷作用时,表现出良好的整体性,能够很好地满足工程的需要;通过ABAQUS建立计算模型,在模拟结果与试验数据基本一致的基础上,进一步验证了现场试验的结论,为模拟桩板基础其他受力工况提供了可靠的模型依据。

关键词: 现场试验, 桩板塔基, 抗拔, 数值计算

Abstract: A new foundation type called pile-slab base is introduced for the 500kV transmission line tower according to the geological conditions of silt. Then the field mechanical tests of heap loading and uplifting are done for this new foundation after the pile integrity testing. At the same time, the pressure of the slab, the stress of steel bar meters and the displacement deformation of four corners of the slab and pile are monitored. The results show that the compressive and uplifting resistance performance is excellent and the foundation can function as a whole to resist deformation; the engineering demand also can be satisfied. Moreover, the field test is simulated by the ABAQUS software; the conclusions are verified further on the basis of consistence between numerical calculation results and test data; therefore, the numerical model can be applied to other mechanical simulation reliably.

Key words: field test, tower foundation of pile-slab, uplifting resistance, numerical calculation

中图分类号: 

  • TU 447
[1] 朱彦鹏, 陶钧, 杨校辉, 彭俊国, 吴强, . 框架预应力锚托板结构加固高填方边坡 设计与数值分析[J]. 岩土力学, 2020, 41(2): 612-623.
[2] 戴国亮, 朱文波, 郭晶, 龚维明, 赵学亮, . 软黏土中吸力式沉箱基础竖向抗拔承载 特性试验研究[J]. 岩土力学, 2019, 40(S1): 119-126.
[3] 吴美苏, 周成, 王林, 谭昌明, . 根系和裂隙对土体水力和力学特性影响数值模拟[J]. 岩土力学, 2019, 40(S1): 519-526.
[4] 王钦科, 马建林, 陈文龙, 杨彦鑫, 胡中波, . 上覆土嵌岩扩底桩抗拔承载特性离心 模型试验及计算方法研究[J]. 岩土力学, 2019, 40(9): 3405-3415.
[5] 陆晨凯, 孔纲强, 孙广超, 陈斌, 殷高翔, . 桩−筏基础中能量桩热−力耦合特性现场试验[J]. 岩土力学, 2019, 40(9): 3569-3575.
[6] 冯君, 王洋, 吴红刚, 赖冰, 谢先当, . 玄武岩纤维复合材料土层锚杆抗拔性能 现场试验研究[J]. 岩土力学, 2019, 40(7): 2563-2573.
[7] 穆锐, 浦少云, 黄质宏, 李永辉, 郑培鑫, 刘 旸, 刘 泽, 郑红超, . 土岩组合岩体中抗拔桩极限承载力的确定[J]. 岩土力学, 2019, 40(7): 2825-2837.
[8] 吴爽爽, 胡新丽, 龚辉, 周昌, 徐楚, 王强, 应春业, . 3种模式下钻孔灌注桩桩-土剪切特性 现场试验研究[J]. 岩土力学, 2019, 40(7): 2838-2846.
[9] 余 瑜, 刘新荣, 刘永权, . 基坑锚索预应力损失规律现场试验研究[J]. 岩土力学, 2019, 40(5): 1932-1939.
[10] 王钦科, 马建林, 胡中波, 王 滨, . 浅覆盖层软质岩中抗拔桩承载特性现场试验研究[J]. 岩土力学, 2019, 40(4): 1498-1506.
[11] 信亚雯, 周志芳, 马 筠, 李鸣威, 陈 朦, 汪 姗, 胡尊乐, . 基于现场双管试验确定弱透水层水力参数的方法[J]. 岩土力学, 2019, 40(4): 1535-1542.
[12] 李 驰, 王 硕, 王燕星, 高 瑜, 斯日古楞, . 沙漠微生物矿化覆膜及其稳定性的现场试验研究[J]. 岩土力学, 2019, 40(4): 1291-1298.
[13] 任连伟, 孔纲强, 郝耀虎, 刘汉龙, . 基于能量桩现场试验的土体综合热导率系数研究[J]. 岩土力学, 2019, 40(12): 4857-4864.
[14] 周同和, 郜新军, 郭院成, 孙轶斌, . 下部扩大段复合桩抗拔承载力设计方法与试验研究[J]. 岩土力学, 2019, 40(10): 3778-3782.
[15] 王 哲, 王乔坎, 马少俊, 薛 毅, 许四法, . 扩大头可回收预应力锚索极限抗拔力计算方法研究[J]. 岩土力学, 2018, 39(S2): 202-208.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[2] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[3] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[4] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[5] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[6] 郑 刚 张立明 刁 钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. , 2011, 32(10): 3089 -3096 .
[7] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .
[8] 马 刚 ,常晓林 ,周 伟 ,周创兵 . 基于Cosserat理论的重力坝深层抗滑稳定分析[J]. , 2012, 33(5): 1505 -1512 .
[9] 王松鹤,齐吉琳. 高温冻土松弛特性试验研究[J]. , 2012, 33(6): 1660 -1666 .
[10] 王 宇 ,贾志刚 ,李 晓 ,汪 灿 ,余宏明 . 边坡模糊随机可靠性分析的模糊点估计法[J]. , 2012, 33(6): 1795 -1800 .