›› 2012, Vol. 33 ›› Issue (4): 1051-1060.

• 基础理论与实验研究 • 上一篇    下一篇

心墙堆石坝渗透稳定可靠性分析的随机响应面法

胡 冉1, 2,陈益峰1, 2,李典庆1, 2,周创兵1, 2,唐小松1, 2   

  1. 1. 武汉大学 水资源与水电工程科学国家重点实验室,武汉 430072;2. 武汉大学 水工岩石力学教育部重点实验室,武汉 430072
  • 收稿日期:2010-10-22 出版日期:2012-04-13 发布日期:2012-04-26
  • 通讯作者: 陈益峰,男,1974年生,博士,教授,博士生导师,主要从事岩土多场耦合分析,岩土渗流、变形与稳定分析方面的研究工作。 E-mail: csyfchen@whu.edu.cn E-mail:whuran@gmail.com
  • 作者简介:胡冉,男,1985年生,博士研究生,主要从事岩土介质多场耦合理论和数值模拟方面的研究工作。
  • 基金资助:

    国家自然科学基金资助项目(No. 51079107,No.51179136);教育部新世纪优秀人才支持计划资助项目(No. NCET-09-0610)

Reliability analysis of seepage stability of core-wall rockfill dam based on stochastic response surface method

HU Ran1, 2,CHEN Yi-feng1, 2,LI Dian-qing1, 2,ZHOU Chuang-bing1, 2,TANG Xiao-song1,2   

  1. 1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; 2. Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering of Ministry of Education, Wuhan University, Wuhan 430072, China
  • Received:2010-10-22 Online:2012-04-13 Published:2012-04-26

摘要: 将大规模渗流有限元计算与随机响应面法相结合,对双江口心墙堆石坝进行渗透稳定可靠性分析。在基于随机响应面法的可靠度分析框架内,堆石坝稳定渗流有限元计算过程和可靠度分析过程分开独立进行,通过对心墙渗透坡降较大区域的节点建立统一的渗透稳定功能函数,采用渗流有限元分析方法和随机响应面法,计算出该区域每个节点处的渗透破坏失效概率,并将最大失效概率作为心墙的失效概率。最后,分析了心墙渗透系数、覆盖层渗透系数、上游水位与心墙具有最大失效概率节点处渗透坡降的相关关系,以及心墙渗透系数和上游水位的变异性对心墙渗透破坏失效概率的影响。计算结果表明,随机响应面法3阶Hermite展开就能够保证良好的计算精度,且计算耗时较小;双江口堆石坝心墙具有最大失效概率节点处的渗透坡降与上游水位密切相关,而与心墙本身的渗透系数呈弱负相关关系,与覆盖层渗透系数的相关性不显著;随着上游水位变异性的增大,心墙失效概率急剧增大,而这种效应对于心墙渗透系数并不明显。研究成果为随机响应面法在实际工程中的应用奠定了一定的基础。

关键词: 可靠性分析, 随机响应面法, 有限元分析, 渗透稳定, 心墙堆石坝

Abstract: The finite element method and stochastic response surface method are combined to analyze the reliability of seepage stability in Shuangjiangkou core-wall rockfill dam project. The seepage flow analysis of the core-wall rockfill dam and the reliability analysis can be conducted separately within the framework of reliability analysis based on the stochastic response surface method. The nodes with the larger hydraulic gradient are selected to establish seepage stability function using the finite element method and stochastic response surface method. The failure probabilities of seepage failure at each node are then calculated and the maximum failure probability is taken as the failure probability of the core-wall. The relationship between the hydraulic gradient of the nodes with maximum failure probability and the hydraulic conductivity of the core-wall and the alluvial deposits, the relationship between the hydraulic gradient of the nodes with maximum failure probability and the upper water level, and the effects of the hydraulic conductivity of core and the variation of upper water level on failure probability of seepage failure of the core-wall are analyzed. The results show that third order Hermite expansion is able to ensure good precision with acceptable time consumption. The seepage at maximum failure probability node in Shuangjiangkou core-wall dam is closely related to upper water level, but has a weak negative correlation with the hydraulic conductivity of the core-wall and is less significant with the hydraulic conductivity of alluvial deposits. On the other hand, as the coefficient of variation of the upper water level increasing, the failure probability increases drastically, but this effect is less significant with regard to the hydraulic conductivity of the core-wall. The results provide a further evidence for readily application of the stochastic response surface method to practical engineering.

Key words: reliability analysis, stochastic response surface method, finite element analysis, seepage stability, core-wall rockfill dam

中图分类号: 

  • TV 139.14
[1] 叶观宝, 郑文强, 张 振, . 大面积填土场地中摩擦型桩负摩阻力分布特性研究[J]. 岩土力学, 2019, 40(S1): 440-448.
[2] 徐 强, 肖 明, 陈俊涛, 倪少虎, . 渗流监测数据缺失处理与渗透稳定判断[J]. 岩土力学, 2019, 40(4): 1526-1534.
[3] 王克忠, 金志豪, 杨麦珍, 刘先亮, 刘 华, . 取水塔基坑开挖过程倒悬岩坎围堰渗透稳定性研究[J]. 岩土力学, 2018, 39(S2): 415-422.
[4] 袁艳玲,郭琴琴,周正军,吴震宇,陈建康,姚福海,. 考虑参数相关的高心墙堆石坝材料参数反分析[J]. , 2017, 38(S1): 463-470.
[5] 何伟杰,杨冬英,崔周飞. 考虑横向惯性下桩的纵向振动理论解和数值解对比分析[J]. , 2017, 38(9): 2757-2763.
[6] 徐 江,龚维明,张 琦,戴国亮,霍少磊,杨 超, . 大口径钢管斜桩竖向承载特性数值模拟与现场试验研究[J]. , 2017, 38(8): 2434-2440.
[7] 冯 君,张俊云,朱 明,江 南,. 软土地层高承台桥梁群桩基础横向承载特性研究[J]. , 2016, 37(S2): 94-104.
[8] 林 聪,杨 强,王海波,李仁鸿,. 基于非线性有限元的孟底沟拱坝数值模拟研究[J]. , 2016, 37(9): 2624-2630.
[9] 周英博,张玉军. 压力溶解对颗粒聚集岩体中热-水-应力耦合作用的弹塑性有限元分析[J]. , 2016, 37(6): 1781-1790.
[10] 张思渊,张玉军. 双重孔隙-裂隙岩体中洞室变形及强度各向异性的三维有限元分析[J]. , 2016, 37(12): 3583-3590.
[11] 陈 曦 ,张训维 ,陈佳林 ,金 锋 ,于玉贞,. 水位波动下非饱和心墙土坝体的渗流和稳定性[J]. , 2015, 36(S1): 609-613.
[12] 张盼盼,罗 汀,姚仰平. 考虑膨胀效应UH模型的有限元实现[J]. , 2015, 36(S1): 664-668.
[13] 付长静 ,李国英 ,米占宽 ,赵天龙,. 卸荷式板桩高桩梁板码头结构土压力简化计算[J]. , 2015, 36(8): 2426-2432.
[14] 温立峰 ,柴军瑞 ,王 晓,. 深覆盖层上面板堆石坝应力变形特性研究[J]. , 2015, 36(8): 2386-2394.
[15] 张玉军 ,琚晓冬,. 热-水-应力-迁移耦合条件下双重孔隙-裂隙介质的抗剪强度及有限元分析[J]. , 2015, 36(3): 877-884.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 崔皓东,朱岳明. 二滩高拱坝坝基渗流场的反演分析[J]. , 2009, 30(10): 3194 -3199 .
[2] 杨自友,顾金才,杨本水,陈安敏,徐景茂. 锚杆对围岩的加固效果和动载响应的数值分析[J]. , 2009, 30(9): 2805 -2809 .
[3] 陈开圣,沙爱民. 压实黄土回弹模量试验研究[J]. , 2010, 31(3): 748 -752 .
[4] 徐兴华,尚岳全,王迎超. 滑坡灾害综合评判决策系统研究[J]. , 2010, 31(10): 3157 -3164 .
[5] 王协群,邹维列,骆以道,邓卫东,王 钊. 压实度与级配对路基重塑黏土土-水特征曲线的影响[J]. , 2011, 32(S1): 181 -184 .
[6] 许振浩 ,李术才 ,李利平 ,侯建刚 ,隋 斌 ,石少帅. 基于层次分析法的岩溶隧道突水突泥风险评估[J]. , 2011, 32(6): 1757 -1766 .
[7] 夏唐代 ,孙苗苗 ,陈 晨. 多重散射问题的改进算法以及双排非连续弹性屏障对水平向剪切波的隔离研究[J]. , 2011, 32(8): 2402 -2408 .
[8] 巩思园,窦林名,何 江,贺 虎,陆菜平,牟宗龙. 深部冲击倾向煤岩循环加卸载的纵波波速与应力关系试验研究[J]. , 2012, 33(1): 41 -47 .
[9] 钟 声 ,王川婴 ,吴立新 ,唐新建 ,王清远. 点状不良地质体钻孔雷达响应特征 ——围岩及充填效应正演分析[J]. , 2012, 33(4): 1191 -1195 .
[10] 姚 池 ,姜清辉 ,叶祖洋 ,周创兵 . 裂隙网络无压渗流分析的初流量法[J]. , 2012, 33(6): 1896 -1903 .