›› 2012, Vol. 33 ›› Issue (4): 1203-1209.

• 数值分析 • 上一篇    下一篇

一种模拟岩石蠕变的数值流形方法

刘 建,陈 佺   

  1. 中国科学院武汉岩土力学研究所 岩土力学与工程国家重点实验室,武汉 430071
  • 收稿日期:2010-10-27 出版日期:2012-04-13 发布日期:2012-04-26
  • 作者简介:刘建,男,1966年生,博士,教授,博士生导师,主要从事地下工程、边(滑)坡地质灾害、大坝基础与结构的应力、变形、稳定性及优化问题的试验测试、理论分析、数值和物理模拟,以及岩石流变力学和水-岩相互作用等领域的研究工作。
  • 基金资助:

    国家自然科学基金资助项目(No. 40672192);水利部公益性行业科研专项项目(No. 201001009);国家自然科学基金资助项目(No. 50479072)

A numerical manifold method for simulating creep of rocks

LIU Jian,CHEN Quan   

  1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received:2010-10-27 Online:2012-04-13 Published:2012-04-26

摘要: 为了保障岩土工程结构能长期正常使用,需要对其蠕变变形进行分析。“时步-初应变”法是一种常用的计算岩石蠕变的方法。数值流形方法是一种新兴的数值计算方法,常用于计算节理岩体的变形,但尚未被试用于计算蠕变变形。在原数值流形方法的程序中增加了基于“时步-初应变”法的计算模块,通过对广义开尔文模型进行的模拟,显示新程序可以正确反映岩石的黏弹性蠕变趋势,并能够计算包含节理的岩体的蠕变变形,改进后的数值流形方法不但能够模拟岩石的线弹性变形,而且可以模拟岩石的黏弹性蠕变,比原流形方法更能全面地模拟岩石的变形,扩展了数值流形方法在岩土工程中的使用范围。

关键词: 数值流形方法, 蠕变, 时步-初应变

Abstract: To ensure the safety and normal usage of geotechnical engineering, it’s necessary to analyze the creep of rock mass. The “time step-initial strain” method is commonly used to compute the creep of rocks. Numerical manifold method (NMM) is a recently developed numerical method which is used to simulate the deformation of jointed rock mass but has not been used to analyze the creep of rocks. A "time step-initial strain" computing module has been added to the NMM code. The result of simulating the deformation of generalized Kelvin model shows that the new program can reflect the trend of viscoelastic creep of rocks and could be used to simulate the creep strain of jointed rock mass; so the adapted NMM now can compute both linear elastic and viscoelastic deformation of rock mass. It reflects rocks’ deformation trend more comprehensively, and extends the usage scope of NMM in geotechnical engineering.

Key words: numerical manifold method, creep, time step-initial strain

中图分类号: 

  • TU 454
[1] 陈卫忠, 李翻翻, 雷江, 于洪丹, 马永尚, . 热−水−力耦合条件下黏土岩蠕变特性研究[J]. 岩土力学, 2020, 41(2): 379-388.
[2] 张峰瑞, 姜谙男, 杨秀荣, 申发义. 冻融循环下花岗岩剪切蠕变试验与模型研究[J]. 岩土力学, 2020, 41(2): 509-519.
[3] 王立业, 周凤玺, 秦虎, . 饱和盐渍土分数阶蠕变模型及试验研究[J]. 岩土力学, 2020, 41(2): 543-551.
[4] 雷江, 陈卫忠, 李翻翻, 于洪丹, 马永尚, 谢华东, 王富刚, . 引红济石引水隧洞围岩力学特性研究[J]. 岩土力学, 2019, 40(9): 3435-3446.
[5] 李晶晶, 孔令伟, . 膨胀土卸荷蠕变特性及其非线性蠕变模型[J]. 岩土力学, 2019, 40(9): 3465-3475.
[6] 金俊超, 佘成学, 尚朋阳. 基于应变软化指标的岩石非线性蠕变模型[J]. 岩土力学, 2019, 40(6): 2239-2246.
[7] 曹 梦, 叶剑红, . 中国南海钙质砂蠕变-应力-时间四参数数学模型[J]. 岩土力学, 2019, 40(5): 1771-1777.
[8] 朱赛楠, 殷跃平, 李 滨, . 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40(4): 1377-1386.
[9] 刘登学, 张友良, 丁秀丽, 黄书岭, 裴启涛, . 数值流形法中基于适合分析T样条的 局部网格加密算法[J]. 岩土力学, 2019, 40(4): 1584-1595.
[10] 李 鑫, 刘恩龙, 侯 丰, . 考虑温度影响的冻土蠕变本构模型[J]. 岩土力学, 2019, 40(2): 624-631.
[11] 杨秀荣, 姜谙男, 王善勇, 张峰瑞, . 冻融循环条件下片麻岩蠕变特性试验研究[J]. 岩土力学, 2019, 40(11): 4331-4340.
[12] 张峰瑞, 姜谙男, 江宗斌, 张广涛. 化学腐蚀-冻融综合作用下岩石损伤蠕变 特性试验研究[J]. 岩土力学, 2019, 40(10): 3879-3888.
[13] 曾 寅, 刘建锋, 周志威, 吴 池, 李志成, . 盐岩单轴蠕变声发射特征及损伤演化研究[J]. 岩土力学, 2019, 40(1): 207-215.
[14] 刘泉声, 罗慈友, 陈自由, 刘 鹤, 桑昊旻, 万文恺, . 现场岩体三轴流变试验设备研制[J]. 岩土力学, 2018, 39(S2): 473-479.
[15] 唐建新,腾俊洋,张 闯,刘 姝, . 层状含水页岩蠕变特性试验研究[J]. , 2018, 39(S1): 33-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 黄庆享,张 沛,董爱菊. 浅埋煤层地表厚砂土层“拱梁”结构模型研究[J]. , 2009, 30(9): 2722 -2726 .
[2] 荆志东,刘俊新. 红层泥岩半刚性基床结构动态变形试验研究[J]. , 2010, 31(7): 2116 -2121 .
[3] 汪 洋,唐雄俊,谭显坤,王元汉. 云岭隧道底鼓机理分析[J]. , 2010, 31(8): 2530 -2534 .
[4] 刘争宏,廖燕宏,张玉守. 罗安达砂物理力学性质初探[J]. , 2010, 31(S1): 121 -126 .
[5] 雷金波,陈从新. 基于双曲线模型的带帽刚性桩复合地基荷载传递机制研究[J]. , 2010, 31(11): 3385 -3391 .
[6] 王登科,刘 建,尹光志,韦立德. 突出危险煤渗透性变化的影响因素探讨[J]. , 2010, 31(11): 3469 -3474 .
[7] 胡 琦,凌道盛,陈云敏. 基于Melan解的水平基床系数分析方法及工程运用[J]. , 2009, 30(1): 33 -39 .
[8] 张成平,张顶立,骆建军,王梦恕,吴介普. 地铁车站下穿既有线隧道施工中的远程监测系统[J]. , 2009, 30(6): 1861 -1866 .
[9] 王 军,曹 平,李江腾,刘业科. 降雨入渗对流变介质隧道边坡稳定性的分析[J]. , 2009, 30(7): 2158 -2162 .
[10] 唐世斌,唐春安,李连崇,张永彬. 湿度扩散诱发的隧洞时效变形数值模拟研究[J]. , 2011, 32(S1): 697 -0703 .