›› 2012, Vol. 33 ›› Issue (5): 1381-1388.

• 岩土工程研究 • 上一篇    下一篇

盾构隧道抗震分析的静力推覆方法

杨智勇1, 2,黄宏伟1, 2,张冬梅1, 2,张 洁1, 2   

  1. 1.同济大学 岩土及地下工程教育部重点实验室,上海 200092;2.同济大学 地下建筑与工程系,上海 200092
  • 收稿日期:2011-06-16 出版日期:2012-05-10 发布日期:2012-05-14
  • 作者简介:杨智勇,男,1982年生,博士研究生,主要从事盾构隧道抗震及风险等方面的研究工作。
  • 基金资助:

    国家重点基础研究发展计划(973计划)资助项目(No. 2011CB013800);长江学者和创新团队发展计划资助(No. IRT1029)。

Pushover method for seismic analysis of shield tunnel

YANG Zhi-yong1, 2, HUANG Hong-wei1, 2, ZHANG Dong-mei1, 2, ZHANG Jie1, 2   

  1. 1. Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Tongji University, Shanghai 200092, China; 2. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
  • Received:2011-06-16 Online:2012-05-10 Published:2012-05-14

摘要: 利用动力时程法对盾构隧道进行抗震分析时,计算时间长,工作量大,土体本构以及阻尼的选择困难,不利于工程设计广泛应用。为了解决这些困难,借鉴地上结构静力推覆分析方法的思想,并结合盾构隧道的地震响应主要由周围土体的地震响应所控制的这一特点,改进了静力推覆方法中的水平加载模式,提出了适用于盾构隧道抗震分析的静力推覆分析方法,并引入了隧道倾斜度的概念来衡量隧道的抗震性能。此法通过对计算模型施加沿地层深度方向分布的倒三角侧向水平位移,来模拟地震对盾构隧道的作用,概念清楚,考虑了隧道与周围土体的相互作用,避免了在动力时程分析中所涉及的土体本构和阻尼的选择、计算模型边界条件等复杂问题,大大降低了盾构隧道抗震分析的难度,同时,可以得到隧道的抗震能力曲线。与动力时程分析的对比结果表明,在弹性阶段,此法的计算结果合理,具有较高的精度,适用于盾构隧道抗震设计。

关键词: 盾构隧道, 静力推覆, 加载模式, 倾斜度, 抗震性能

Abstract: The dynamic time-history analysis of shield tunnel seismic design needs long computed time and massive work. The dynamic constitutive model and damp for soils are difficult to determine. Its wide application in practical project is hindered by these problems. In order to solve these difficulties, a modified pushover method for shield tunnel which is developed from pushover method of structure on the ground is put forward; and inclination of shield tunnel is introduced to assess its seismic performance. Since the seismic responses of shield tunnel are determined by the surrounding soils; the horizontal loading model is improved. In this method, the seismic action on shield tunnel is simulated by applying the inverted-triangular lateral horizontal displacement on the model along the depth. The complex problems existed in the dynamic time-history analysis, such as the dynamic constitutive model and damp of soil, the boundary condition, are avoided; and the interaction between tunnel and soil is able to consider in this method. The seismic performance capacity curve also could be obtained by this method. The comparison results with dynamic time-history analysis show that the calculation result of the modified pushover method is reasonable and accurate in the elastic stage. It is an appropriate method for seismic design of shield tunnel.

Key words: shield tunnel, pushover, loading model, inclination, seismic performance

中图分类号: 

  • TU 921
[1] 魏纲, 张鑫海, 林心蓓, 华鑫欣, . 基坑开挖引起的旁侧盾构隧道横向受力变化研究[J]. 岩土力学, 2020, 41(2): 635-644.
[2] 杨振兴, 陈健, 孙振川, 游永锋, 周建军, 吕乾乾, . 泥水平衡盾构用海水泥浆的改性试验研究[J]. 岩土力学, 2020, 41(2): 501-508.
[3] 章定文, 刘志祥, 沈国根, 鄂俊宇, . 超大直径浅埋盾构隧道土压力实测分析 及其计算方法适用性评价[J]. 岩土力学, 2019, 40(S1): 91-98.
[4] 张治国, 李胜楠, 张成平, 王志伟, . 考虑地下水位升降影响的盾构施工诱发地层 变形和衬砌响应分析[J]. 岩土力学, 2019, 40(S1): 281-296.
[5] 黄大维, 周顺华, 冯青松, 罗锟, 雷晓燕, 许有俊, . 地表均布超载作用下盾构隧道上覆土层 竖向土压力转移分析[J]. 岩土力学, 2019, 40(6): 2213-2220.
[6] 莫振泽, 王梦恕, 李海波, 钱勇进, 罗跟东, 王辉, . 粉砂地层中浓泥土压盾构泥膜效应引起的 孔压变化规律试验研究[J]. 岩土力学, 2019, 40(6): 2257-2263.
[7] 姚爱军,张剑涛,郭海峰,郭彦非. 地铁盾构隧道上方基坑开挖卸荷-加载影响研究[J]. , 2018, 39(7): 2318-2326.
[8] 钟 宇,陈 健,陈国良,吴佳明, . 基于建筑信息模型技术的盾构隧道结构信息模型建模方法[J]. , 2018, 39(5): 1867-1876.
[9] 杨文波,陈子全,徐朝阳,晏启祥,何 川,韦 凯, . 盾构隧道与周围土体在列车振动荷载作用下的动力响应特性[J]. , 2018, 39(2): 537-545.
[10] 康 成, 梅国雄, 梁荣柱, 吴文兵, 方宇翔, 柯宅邦, . 地表临时堆载诱发下既有盾构隧道纵向变形分析[J]. 岩土力学, 2018, 39(12): 4605-4616.
[11] 李长俊,陈卫忠,杨建平,刘金泉, . 运营期水下盾构隧道管片接缝张开度变化规律[J]. , 2018, 39(10): 3783-3793.
[12] 魏 纲,林 雄,金 睿,丁 智,. 双线盾构施工时邻近地下管线安全性判别[J]. , 2018, 39(1): 181-190.
[13] 姜 燕,杨光华,陈富强,徐传堡,张玉成, . 湛江湾高水头跨海盾构隧道管片结构典型断面受力计算与监测反馈分析[J]. , 2018, 39(1): 275-286.
[14] 马春景,姜谙男,江宗斌,王善勇,. 基于单元状态指标的盾构隧道水-力耦合模拟分析[J]. , 2017, 38(6): 1762-1770.
[15] 张晓清,张孟喜,李 林,李武祥,王有成,. 多线叠交盾构隧道近距离穿越施工扰动机制研究[J]. , 2017, 38(4): 1133-1140.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孙树林,李 方,谌 军. 掺石灰黏土电阻率试验研究[J]. , 2010, 31(1): 51 -55 .
[2] 李英勇,张顶立,张宏博,宋修广. 边坡加固中预应力锚索失效机制与失效效应研究[J]. , 2010, 31(1): 144 -150 .
[3] 梁健伟,房营光,谷任国. 极细颗粒黏土渗流的微电场效应分析[J]. , 2010, 31(10): 3043 -3050 .
[4] 李秀珍,王成华,邓宏艳. DDA法和Fisher判别法在潜在滑坡判识中的应用比较[J]. , 2011, 32(1): 186 -192 .
[5] 吉武军. 黄土隧道工程问题调查分析[J]. , 2009, 30(S2): 387 -390 .
[6] 陈力华 ,林 志 ,李星平. 公路隧道中系统锚杆的功效研究[J]. , 2011, 32(6): 1843 -1848 .
[7] 陈立文,孙德安. 不同应力路径下水土耦合超固结黏土分叉分析[J]. , 2011, 32(10): 2922 -2928 .
[8] 郑 刚 张立明 刁 钰. 开挖条件下坑底工程桩工作性状及沉降计算分析[J]. , 2011, 32(10): 3089 -3096 .
[9] 赵明华,雷 勇,张 锐. 岩溶区桩基冲切破坏模式及安全厚度研究[J]. , 2012, 33(2): 524 -530 .
[10] 马 刚 ,常晓林 ,周 伟 ,周创兵 . 基于Cosserat理论的重力坝深层抗滑稳定分析[J]. , 2012, 33(5): 1505 -1512 .